Top-off Upgrade: What and Why

Christoph A Steier Advanced Light Source

Accelerator Physics Group July 12, 2006

Outline

- Top-off
 - Why
 - What needs to be done: Overview
 - Project Management Structure
 - Status
- Technical System
 - System by system listing what we plan to do (already did) and short motivation why
- Schedule/Future Plans
 - Fall shutdown
 - Next year

Motivations for Top-off

- Increased Brightness
 - 2x higher time average current
 - Smaller vertical emittance (0.25x)
 - Smaller undulator gaps
 - First two changes would result in unacceptably short lifetimes without top-off
- Better (thermal) stability
 - Accelerator (thermal)
 - Beam diagnostics (current dependence)
 - Beamline optics (especially bend magnet/wiggler beamlines, but also undulators)

What is Brightness ?

• The brightness of light is defined as the number of photons emitted (within some bandwidth) normalized by the emission area and the emission solid angle

 \Rightarrow the smaller the source and the more parallel the beam, the higher the brightness

• Total radiated power of the Sun is a thousand * a billion * a billion times greater than the ALS, but the radius of the Sun is about 100 times bigger than earth, whereas the ALS beam is about as small as a hair (100 μ m) and the emission solid angle of the sun is 4π (about 13 rad²) compared to a hundredth of a millionth rad² for the ALS (area*solid angle factor is about 10³⁵!!!)

Comparing the Sun and the ALS further

- ALS (and other synchrotron light • sources worldwide) are much brighter than the Sun
- Spectrum of the Sun: 'black body • radiation' given by surface temperature (5800 K) + absorption lines + some harder UV and x-rays (mostly absorbed in atmosphere)
- ALS covers broad spectrum, peak in • **VUV** and soft x-ray (all electromagnetic radiation is called light by physicists, not just the visible light) \rightarrow undulators

Antares (3400 K)

10,000

15,000

20,000

1.0

0.75

0.50

0.25

Spica (23,000 K)

The Sun (5800 K)

5000

Why Experiments Require High Brightness?

- Samples studied at the ALS are small (protein crystals, cells, structures on computer hard disk surfaces, atomic beams, ...); detectors have limited acceptance; smaller beams enable higher precision experiments; coherence; ...
- Wavelength and energy of ALS light suited for wide range of systems and structures

Verrs of World-Class Science 1931-2006

Why do we use soft x-rays for experiments?

• Three main reasons:

- Wavelength of light has to be of the order of objects to study (distance of atoms, molecules,...) → ALS covers about 0.1 nm to several µm
- Probing the electronic structure requires the right energy
- X-rays can penetrate matter, can probe surface as well as bulk

(Reduced) Scope of the Top-off Upgrade

- Upgrade injector to enable full energy injection
- Improve diagnostics and other existing systems where necessary for reliability
- Upgrade radiation safety system to allow injection with shutters open
- Minimize injection transients to reasonable levels and provide a gating signal
- Migrate to higher current and smaller vertical beamsizes
- Transition to Top-off with minimal negative impact to users
- Delayed/dropped bunch cleaning in booster

Upgrade injector for full energy injection

- New booster+BTS DC Power Supplies and Controls
- Upgrade of the booster RF system (e.g. power)
- Modifications of the Pulsed Magnets and Supplies
- Timing System, Controls, Diagnostics
- User Gating Signal
- Radiation Interlocks, Collimators, ...

Status of Top-off Project

- Conceptual Design Review of the Project in November 2004, CDR in December 2004
- Received funding in March 2005
- Testing of Pulsed Magnet Systems 2005/2006
- Finished Design work on major systems 2006
- Long Lead Items ordered, several delivered
- Radiation Safety Studies/System Design
- In house fabrication of smaller systems 2006

LAWRENCE BERKELEY NATIONAL LABORATORY

Years of Wor<u>ld-Clas</u>

Science

......

Work breakdown structure (level 3)

- 1.1 Project Management
- 1.2 Top Off Documentation
 - 1.2.1 User Requirements
 - 1.2.2 Specification
 - 1.2.3 CDR
- 1.3 Linac
- 1.3.1 EDI
- 1.3.2 Beam Loading Compensation
- 1.3.3 Diagnostics
- 1.4 Booster
 - 1.4.1 Power Supplies
 - 1.4.2 Thin Septum Magnet
 - 1.4.3 Thick Septum Magnet
 - 1.4.4 Kicker Magnet
 - 1.4.5 RF
 - 1.4.6 Diagnostics
 - 1.4.7 Bump Magnets

1.5 BTS

- 1.5.1 EDI
- 1.5.2 Diagnostics
- 1.5.3 Beam Stopper for Injection Tune-Up
- 1.5.4 B1-B4 bend power supplies

LAWRENCE BERKELEY NATIONAL LABORATORY

- 1.6 Storage Ring
 - 1.6.1 Bump Magnets
 - 1.6.2 Thin Septum Magnet
 - 1.6.3 Thick Septum Magnet
 - 1.6.4 Radiation Protection
 - 1.6.6 Diagnostics
- 1.7 Controls and Timing
 - 1.7.1 User Gating Signal
 - 1.7.2 Linac and Booster Timing
 - 1.7.3 Controls
 - 1.7.4 RF Controls

1.8 Commissioning

- 1.8.1 Pre-commissioning
- 1.8.2 Commissioning/Startup

Where can you look up infos?

- http://als.lbl.gov/als_physics/csteier/top_off/
 - Cost estimate is detailed and includes all work
 - CDR gives overview of the project, motivation,

• • •

- Monthly progress reports tell about where we are and what problems we face
- Schedule (not quite up to date)
- Risk analysis (not quite up to date)
- Change order log

Project Management, ...

- I will not talk about project management part – I am still learning on the job ... ⁽²⁾
- If you have any questions, concerns, suggestions, all of us always have an open ear
- Scope of Documentation and LINAC upgrades turned out to be minimal – will not cover either (at the moment nothing remains to be done)

LAWRENCE BERKELEY NATIONAL LABORATORY

Years of World-Clas

Science

.....

Booster

- All magnets turned out to be sufficient for higher energy
- Power supplies are not!
 - New Bend Magnet Supply
 - New QF+QD supplies
 - Sextupole power supplies turned out to be sufficient!
 - New controls for all supplies (including sextupoles and correctors) -> Controls section
 - Replace multiplying DACs
 - New timing system
- New RF transmitter, HVPS, cavity window, waveguides, ...
- Pulsed Magnets
 - Charging supplies, pulsers, cooling
- Tune Measurement System

Years of World-Class Science 1931-2006

Power Supplies

- Bend, QF, QD manufactured by IE Power
- Bend with capacitor bank
- All with switch
 mode technology
- Analog input is only backup, primary control is fully digital

New Booster RF system

- New transmitter is IOT based
- Delivered last week test installation under way

Tests of the Pulsed Magnet Systems

 Successfully tested each of the Pulsed Magnets at full energy

BTS

- All magnets turned out to be sufficient for higher energy
- Power supplies again are not!
 - New B1-B4 power supplies
- New SR monitor diagnostics (off B1)
- Two pairs of horizontal collimators (radiation protection)

Power Supplies

- 4 BTS B1-B4 power supplies are build by alpha-scientific
- Conventional SCR technology, similar footprint to existing supplies
- Control however will be digital as well, details are still being worked out

SRM @ B1 BTS Bending Magnet

Photons per beam passage	~ 1.3×10 ⁸	Horizontal acceptance	~ 18
(between 250 – 700 nm)		(total chamber aperture)	[mrad]
Energy deposited in the mirror per passage (whole SR spectrum)	~ 8.0 ×10 ⁻⁷	Minimum vertical acceptance	10
	[J]	(total)	[mrad]
Bunch charge	9.84 ×10⁻¹⁰	Mirror angle	45
(1.5 mA in the Storage Ring)	[C]		[deg]

Requires replacement of the flag with a mirror. Nothing more!

LAWRENCE BERKELEY NATIONAL LABORATORY

1931-2006

Storage Ring

- Pulsed Magnets
 - Bumps are OK
 - Septa as in Booster
 - In addition full sine thick septum pulser
- Radiation Safety
 - Fill interlock
 - Beamline Radiation Monitor Interlocks
 - Energy Matching
 - Jackson Hole Scrapers
- Bunch Cleaning
- Fill structure monitor

Injection magnets layout

Upgrading our Radiation Protection Systems

Changes in operation after Top-Off

- Injection with the personnel safety shutters open
- Higher stored beam losses
- Injection with undulators closed

The radiation protection systems (interlocks, collimation, local shielding) will be upgraded to ensure safe operation with Top-off

Years of World-Cla

mm

Upgrading our Radiation Protection Systems

Extensive testing on beamline 4.0 (already tested 1.5 GeV top-off with beamline 4.0 open)

- Working closely with DOE
- (External) Review in Winter 06/07
- ALS Safety Analysis Document (SAD) will be modified

Interlock Changes

- Injection will only be allowed with shutters open if
 - There is stored beam
 - The energy of the injected beam matches the stored beam
- Additionally we will have active interlocked monitors on beamlines

Beamline Interlocked Monitors

- Monitors have been installed on beamline frontends for years
- So far only used for monitoring
- Will be interlocked (safety gain independent of top-off)
- New electronics, new monitoring applications, tested saturation behavior

- If all our efforts to demonstrate that apertures protect injected beam down photon beamlines with stored beam should fail
 - Fallback solution is to add permanent magnets on (subset) of frontends (x.3 beamlines ?)

Controls and Timing

- New main power supplies (booster+BTS) are digital
 - New controls via network
- Need to update controls of other ramping magnets (and RF amplitude)
 - minilOC
 - Modify multiplying DACs
- Need to control PLC of RF transmitter
- Control of stepper motors (scrapers, collimators)
 - Several new IOCs and controllers
- Need new master timing system (more flexibility) + controls interface
- User gating signal

Commissioning

- This time startup+commissioning will center on booster (+BTS)
- Hope to start just after Thanksgiving
- Will start without beam (power supplies and controls tests)
- Later with beam, but first just in booster
 - Can continue work in storage ring for a while (HOM dampers, BPM buttons, ...)

Shutdown+Commissioning Schedule

Future (Top-off) Plans

- Extended shutdown will be in Fall 2006
 - Starts just after User meeting (middle of October), commissioning November+December
- Plan to operate with full-energy injection immediately following the shutdown
- Will slowly migrate to full top-off operation during the following six to nine months
- Move to 500 mA and smaller emittances within 2007 (maybe intermediate steps based on user responses, ...)

