

Storage ring optics Characterization – the basics

O Beam Diagnostics

- ♥ DCCT
- s BPMs
- **Synchrotron light monitors**
- Scrapers
- Loss monitors
- Measuring tunes, **b**, **h**, chromaticity, **a**

Basic optics measurements

Photon factory DCCT

Basic optics measurements

The DC bias current is adjusted to remove the 2^{nd} harmonic (14 kHz) response of toroid. The beam current is proportional to the DC bias current.

> Ferrite core Xsection

Basic optics measurements

Electron BPM buttons sample electric fields; striplines couple to electric and magnetic fields.

Examples of photon BPMs:

Copper fluorescence bpm:

Tungsten blade monitor:

Basic optics measurements

Beam loss monitors

Electrons hit vacuum chamber and generate e+/e- shower which can be detected with beam loss monitors. Advantages over DCCT:

- Large dynamic range can measure small losses
- Can localize losses for injected and stored beam
 - Losses at small vertical gaps (insertion devices) from Coulomb scattering.
 - Losses at high dispersion locations (Touschek scattering).

A scintillator with a photomultiplier is another commonly used BLM.

Basic optics measurements

generate pulses

particles.

Beam loss monitor measurement

At BESSY, the beam loss was measured as a function of tunes. The additional losses associated with an insertion device showed a problem with nonlinear fields. (More on Thursday).

Basic optics measurements

Beam frequencies

Using a spectrum analyzer with a BPM can yield a wealth of information on beam optics and stability. A single bunch with charge q in a storage ring with a revolution time T_{rev} gives the following signal on an oscilloscope

$$I(t) = \sum_{n=-\infty} q \boldsymbol{d}(t - nT_{\text{rev}}),$$

where I'm assuming a zero-length bunch. A spectrum analyzer would see the Fourier transform of this,

$$I(\boldsymbol{w}) = \sum_{w=1}^{\infty} q \boldsymbol{w}_{rev} \boldsymbol{d}(\boldsymbol{w} - n \boldsymbol{w}_{rev})$$

Spectrum for finite bunch length

For finite bunch length, the single bunch spectrum rolls off as the Fourier transform of the longitudinal bunch profile (Gaussian for e-rings).

For SPEAR3 $s_z = 4.5$ mm, so c/ $s_z = 67$ GHz.

Basic optics measurements

Betatron tune

Combining BPM signals, $V_A - V_B - V_C + V_{D}$, gives a dipole signal that scales as the product of beam current and position. For a closed orbit $x_{c.o.}$ and a betatron oscillation x_b , the signal is

$$d(t) = (x_{c.o.} + x_b \cos(2pnt)) \sum_{n=-\infty}^{\infty} q d(t - nT_{rev})$$

Betatron tune, **2**

The integer/half-integer ambiguity in tune measurement arises from undersampling of the betatron oscillations.

It can be resolved by measuring the shift in closed orbit from a single steering magnet.

Basic optics measurements

Synchrotron oscillations cause modulation of the arrival time of the beam by the synchrotron tune. This also shows up as sidebands around the revolution harmonics.

Basic optics measurements

More on spectrum

Tune measurements play an important role in many storage ring measurements.

- Turn by turn measurements, FFT, NAFF
- Betatron phase measurement (Tuesday)
- Nonlinear dynamics (tune vs. amplitude; tune vs. closed orbit; Thursday)
- Impedance measurements (Friday)
- Beta function measurements
- Chromaticity

Beta function measurement

Beta functions can be measured by measuring the change in tune with quadrupole strength: $\Lambda(KI)$

$$\Delta \boldsymbol{n} = \boldsymbol{b} \, \frac{\Delta(KL)}{4\boldsymbol{p}}$$

Measurement issues

- Keep orbit constant
- Hysteresis
- Saturation
- Sometimes cannot vary individual quadrupoles

 β measurement in PEPII HER IR indicates optics problem.

(Methods to be described Tuesday were used to find source of problem and correct it.)

Basic optics measurements

SPEAR b-function correction

- **1. b** functions measured at quads.
- 2. MAD model fit to measurements.
- 3. MAD quadrupoles adjusted to fix **b**'s.
- 4. Quadrupole changes applied to ring.
- 5. **b** functions re-measured at quads.
- 6. Iterate.

Basic optics measurements

Turn 9

Turn 10

Other b measurements

1. Fit **b** and **f** to measured orbit response matrix (Y. Chung et al., PAC'93) $M_{ij} = \frac{\Delta x_i}{\Delta q_i} = \frac{\sqrt{b_i b_j}}{2\sin(pn)}\cos(|f_i - f_j| - pn)$

N_{BPM}*N_{steerer} data 2*N_{BPM}+2*N_{steerer}+1 unknowns

- 2. Fit quadrupole gradients, K, to measured orbit response matrix. From K get **b** (Tuesday lecture).
- 3. Derive from betatron phase measurements (Tuesday lecture).

4. Beam size measurement

$$S = \sqrt{eb}$$

Measuring b
mismatch; injected
beam; SLC
damping rings.
Measuring b
mismatch; injected
beam; SLC
damping rings.
Minty and Spence, PAC'95

Basic optics measurements

Beam-based Diagnostics, USPAS, June 23-27, 2003, J. Safranek

Turn 1 Turn 5

Turn 2 Turn 6

Dispersion

Dispersion is the change in closed orbit with a change in electron energy. $h \equiv \Delta x / \frac{\Delta p}{p}$

The energy can be changed by shifting the rf frequency.

$$a \equiv \frac{\Delta L}{L} / \frac{\Delta p}{p} \implies \frac{\Delta p}{p} = -\frac{1}{a} \frac{\Delta f_{rf}}{f_{rf}}$$
 (a = momentum compaction)

So the dispersion can be measured by measuring the change in closed orbit with rf frequency.

$$\boldsymbol{h} = -\boldsymbol{a} f_{rf} \frac{\Delta x}{\Delta f_{rf}}$$

Basic optics measurements

Dispersion measurement

(HEL)

(HELL)

Dispersion distortion can come from quadrupole or dipole errors.

$$\boldsymbol{h}_{x}^{\prime\prime} + K_{x} \boldsymbol{h}_{x} = \frac{1}{\boldsymbol{r}_{x}}$$

Vertical dispersion gives a measur of vertical bending errors or skew gradient errors in a storage ring.

$$\boldsymbol{h}_{y}'' + K_{y}\boldsymbol{h}_{y} = \frac{1}{\boldsymbol{r}_{y}} + K^{\text{skew}}\boldsymbol{h}_{x}$$

$$= \frac{1.5}{1.0} + \frac{1.5}{0.5} + \frac{1.5}{0.5}$$

Uli Wienands

X-Ray Ring h indicates large K_x errors 2.0 Hord Alerah Alerah Alerah Alerah Alerah Alerah

Basic optics measurements

Chromaticity

Quadrupoles focus high energy particles less than low energy particles. This leads to a decrease in tune with energy (natural chromaticity):

$$\boldsymbol{x}_N = \Delta \boldsymbol{n} / \frac{\Delta p}{p}$$

Decrease in tune with energy is corrected with sextupoles (position dependent focussing),

$$K = mx = m\mathbf{h}\,\Delta p/p$$

K is the gradient, *m* is the sextupole strength.

The chromaticity with sextupoles is called the corrected chromaticity,

X

Basic optics measurementsBeam-based Diagnostics, USPAS, June 23-27, 2003, J. Safranek

Chromaticity measurement

To measure the chromaticity, the beam energy can be changed in one of two ways:

1. Change the rf frequency. This shifts the orbit in sextupoles, giving the corrected chromaticity.

$$\boldsymbol{x} = -\boldsymbol{a} f_{rf} \, \frac{\Delta \boldsymbol{n}}{\Delta f_{rf}}$$

Used to diagnose sextupole miswiring in PEPII-HER.

2. Change the dipole field. This keeps orbit constant, measuring the natural chromaticity.

$$\boldsymbol{x}_{N} = \frac{\Delta \boldsymbol{n}}{\Delta B/B}$$

 x_N can also be measured from n vs. frf with sextupoles turned off.

Basic optics measurements

Momentum compaction

Using the model value of a for x and h measurements can lead to errors. a itself can be measured in various ways.

Direct measurement: measure change in energy with rf frequency.

$$\boldsymbol{a} = -\frac{\Delta f_{rf} / f_{rf}}{\Delta p / p}$$

Friday will include lecture on energy measurement.

Basic optics measurements

Further reading

For more on beam measurements, see:

<u>Beam Measurement</u>, Proceedings of the Joint US-CERN-Japan-Russia School on Particle Accelerators, S-I. Kurokawa, S.Y. Lee, E. Perevedentsev & S. Turner, editors, World Scientific (1999).

My lecture was in particular derived from lectures in <u>Beam Measurement</u> by Frank Zimmermann and John Byrd. The lectures by Frank Zimmermann are given in more detail in a new book:

M.G. Minty and F. Zimmermann, <u>Measurement and control of charged particle</u> <u>beams</u>, Springer (2003).