Storage ring optics < *
characterization — the basics

O Beam Diagnostics
v, DCCT
Y, BPMs
% Synchrotron light monitors
L, Scrapers

% LoSS monitors

O Measuring tunes, b, h, chromaticity, a
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Photon factory DCCT
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DCCT (or PCT) circuit Bergoz PCT
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Beam position monitors
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Electron BPM buttons sample electric fields; striplines couple to electric
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Beam size measurements (more on Thurs)"

Synchrotron light monitors measure beam core
pinqole phosphqA
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Scrapers measu re beam halo Peter Stefan et al., NIMA, 1998
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Beam loss monitors LN ¢
Electrons hit vacuum chamber and generate e+/e- shower which can be
detected with beam loss monitors. Advantages over DCCT:
e Large dynamic range — can measure small losses
* Can localize losses for injected and stored beam

* Losses at small vertical gaps (insertion devices) from Coulomb scattering.

» Losses at high dispersion locations (Touschek scattering).

Operating principle

Bergoz PIN diodes
generate pulses
when from ionizing
particles.

A scintillator with a photomultiplier is another commonly used BLM.
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Beam loss monitor measurement

At BESSY, the beam loss Qy
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Kuske et al., PACO1.
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Beam frequencies

Using a spectrum analyzer with a BPM can yield a wealth of mformatlon
on beam optics and stability. A single bunch with charge q in a storage
ring with a revolution time Trevgives the following signal on an

oscilloscope
1(t) = a qd(t NT,),
n=- ¥

where I'm assuming a zero-length bunch. A spectrum analyzer would
see the Fourier transform of this,
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Spectrum for finite bunch length

For finite bunch length, the single bunch spectrum rolls off as the
Fourier transform of the longitudinal bunch profile (Gaussian for e-
rings).

Courtesy J. Byrd
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For SPEAR3s,=4.5mm, so c/s,=67 GHz.
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Betatron tune

Combining BPM signals, V,-V-V+Vy gives a dipole signal that scales as
the product of beam current and position. For a closed orbit x., and a

betatron oscillation x,, the signal is v

d(t) = (X, +X, coS(2pnt)) § qd(t- nT,,)
The Fourier transform is =

dw) =qw, %, dWw- nw,_)+qw,x, & dWw- (w, +nw,_,))

f fi
<_rev_' _>||<_

Frequency

The tuneis given by n = ]‘b/frev (with integer/half-integer ambiguity).
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Betatron tune, 2

The integer/half-integer ambiguity in tune measurement arises from
undersampling of the betatron oscillations.
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It can be resolved by measuring the shift in closed orbit from a
single steering magnet.

DX = Vbibj cos(|f; - f,[-pn)

Dg, ~ 2sn(pn)
(5)/ lﬂﬁ(s) o
0 > \\/ é(s)
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Synchrotron tune

Synchrotron oscillations cause modulation of the arrival time of the
beam by the synchrotron tune. This also shows up as sidebands
around the revolution harmonics.

Spectrum from synchrotron oscillations (courtesy J. Byrd)
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Multibunch spectra, instabilities, Sebek, Friday.
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More on spectrum

Tune measurements play an important role in many storage
ring measurements.

e Turn by turn measurements, FFT, NAFF
» Betatron phase measurement (Tuesday)

* Nonlinear dynamics (tune vs. amplitude; tune vs. closed orbit;
Thursday)

* Inpedance measurements (Friday)
» Beta function measurements

 Chromaticity
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Beta function measurement

Beta functions can be measured by measuring the change in tune with
gquadrupole strength: D(KL)
Dn =D
4p

Measurement issues
« Keep orbit constant
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individual quadrupoles ]
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= |
b measurement in PEPII HER IR |
indicates optics problem. > 100 ‘

(Methods to be described Tuesday
were used to find source of o b=
problem and correct it.)

Distance(m}
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SPEAR b-function correction:

1. Db functions measured at quads. "B
G) E5III
2. MAD model fit to measurements. o | i
Q| g
3. MAD quadrupoles adjusted to fix < £, 1
b's QAP IHF R p Ny |
' R R
4. Quadrupole changes applied to ” K P
ring. _
5. b functions re-measured at "
guads. o
6. Iterate. 5 :1
5| i |
THRAARRT {8 1
JYUVRUYVYY VERTV YTV
= [m]

Courtesy Heinz-Dieter Nuhn
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Other b measurements

1. Fitb andf to measured orbit response matrix (Y. Chung et al.,

PAC’93) _ bb.
M, =28 = N cogjf, - £ |-pn)
Dy, 2sn(pn)

data

*
N BPM Nsteerer

* *
2*Ngpmt2*Ngieerert1 UNkNowns

2. Fit quadrupole gradients, K, to
measured orbit response matrix.
From K get b (Tuesday lecture).

3. Derive from betatron phase
measurements (Tuesday
lecture).

4. Beam size measurement . >

Measuring b
— / mismatch; injected|
S _ eb beam; SLC J *
damping rings.

Tuma " Tum 12

: Turn 4

Minty and Spence, PAC’'95
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Dispersion

Dispersion is the change in closed orbit with a change in electron
energy. D
ho Dx/—p
P

The energy can be changed by shifting the rf frequency.
0DL/Dp -  Dp__1Df

(& = momentum compaction)

L p p_-gfrf

So the dispersion can be measured by measuring the change in
closed orbit with rf frequency.

h=-af, X

rf
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guadrupole or dipole errors.

hx”-l-Kxhx :i
I

X

of vertical bending errors or skew
gradient errors in a storage ring.
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Dispersion measurement

Dispersion distortion can come from

Vertical dispersion gives a measure

-0

LU L el

trhw%wm#vLfhH—JTTJwﬂw%#Heﬁ#*mm#whr%ﬂhﬂwlrhfhw

X-Ray Ring h indicates large K, errors

o o P P e
X measured ——design model
1.5 X "
X
= 0.5 X[ x ):{ 1
X X
0 X X
X . : . :
0 60 120

Distance(m)

PEPIl h and h measurement
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Chromaticity

Quadrupoles focus high energy particles less than low energy particles.
This leads to a decrease in tune with energy (natural chromaticity):

xN:Dn/Dg)

Decrease in tune with energy is corrected with sextupoles (position
dependent focussing),

K=mx=mh Dp/p
Kis the gradient, mis the sextupole strength.

The chromaticity with sextupoles is called the corrected chromaticity,

X
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Chromaticity measurement . =,

To measure the chromaticity, the beam energy can be changed in one of

two ways: 2w 0 e
: |
1. Change the rf frequency. This % corrected x in LEP
shifts the orbit in sextupoles, d
giving the corrected chromaticity. ol _CEG
= -
_ f Dn 0B - §
X_-arf— 0.I7TR| 5
100
rf :
0.176 ] I
Used to diagnose sextupole mis- e S S
wiring in PEPII-HER. 0001 a_ i
_ _ _ N A Xy In SPEAR v, 1, ..
2. Change the dipole field. This ] e
keeps orbit constant, measuring  ***] Tex_ T
the natural chromaticity. e, N\E i
X — Dn o | [,=1375.15 amp Hih“‘b\__mﬁ .G.ﬁﬁ'
N ol | 0.64
DB/ B - SC N

e TN ey AT et T — T
—& -85 —4 -5 —&8 =1 0 r =2 a3 ]

Xy can also be measured from n vs. frf with sextupoles turned off.
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Momentum compaction

Using the model value of a for x and h measurements can lead to errors.
a itself can be measured in various ways.

I I | | | |

95 . -
Wienands et al.

Indirect measurement from slope=4.1103
bunch length 5 PN e "
% 1065 - o
S, = 4 4 5 ol PEPI-HER a _
2pf., N, % measurement,
&

90

Direct measurement: measure change in energy with rf frequency.

I:)I:rf/frf
Do/ p

Friday will include lecture on energy measurement.

a=-
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Further reading

For more on beam measurements, see:

Beam Measurement, Proceedings of the Joint US-CERN-Japan-Russia School
on Particle Accelerators, S-I. Kurokawa, S.Y. Lee, E. Perevedentsev & S. Turner,
editors, World Scientific (1999).

My lecture was in particular derived from lectures in Beam Measurement by
Frank Zimmermann and John Byrd. The lectures by Frank Zimmermann are
given in more detail in a new book:

M.G. Minty and F. Zimmermann, Measurement and control of charged particle
beams, Springer (2003).
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