Review of Linear Accelerator Optics

David Robin

Outline

- Transverse optics
- Longitudinal optics
- Radiation

Concepts

Want to touch on a number of concepts including:

- Closed orbit
- Betatron tune
- Dispersion
- Momentum compaction
- Transfer matrix
- Twiss parameters and phase advance
- Chromaticity
- Energy spread
- Emittance
- Equilibrium beam sizes

Particle Storage Rings

In a particle storage rings, charged particles circulate around the ring in bunches for a large number of turns.

Optics elements

Particle bunches

Equations of Motion in a Storage Ring

The motion of each charged particle is determined by the electric and magnetic forces that it encounters as it orbits the ring:

- Lorentz Force

$$
F=m a=e(E+v \times B),
$$

m is the relativistic mass of the particle,
e is the charge of the particle,
v is the velocity of the particle,
a is the acceleration of the particle,
E is the electric field and,
B is the magnetic field.

Typical Magnet Types

There are several magnet types that are used in storage rings:
Dipoles \rightarrow used for guiding

$$
\begin{aligned}
& B_{x}=0 \\
& B_{y}=B_{o}
\end{aligned}
$$

Quadrupoles \rightarrow used for focussing

$$
\begin{aligned}
& B_{x}=K y \\
& B_{y}=-K x
\end{aligned}
$$

Sextupoles \rightarrow used for chromatic correction

$$
\begin{aligned}
& B_{x}=2 S x y \\
& B_{y}=S\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Functions of the magnetic elements

Two approaches

There are two approaches to introduce the motion of particles in a storage ring

1. The traditional way in which one begins with Hill's equation, defines beta functions and dispersion, and how they are generated and propagate, ...
2. The way that our computer models actually do it

I will begin with the second way and then go back to the first.

Equations of motion

Coordinate System

Change dependent variable from time to longitudinal position, s

Coordinate system used to describe the motion is usually locally Cartesian or cylindrical

Typically the coordinate system chosen is the one that allows the easiest field representation

Integrate

Integrate through the elements

Use the following coordinates*

$$
x, x^{\prime}=\frac{d x}{d s}, y, y^{\prime}=\frac{d y}{d s}, \quad \delta=\frac{\Delta p}{p_{0}}, \tau=\frac{\Delta L}{L}
$$

*Note sometimes one uses canonical momentum rather than x^{\prime} and y^{\prime}

Find the Closed Orbit
A closed orbit is defined as an orbit on which a particle circulates around the ring arriving with the same position and momentum that it began.

In every working story ring there exists at least one closed orbit.

Approximation

Everything up to now there was general. No discussion of the field representation or the integrator. In many codes simplifications are made.

1. The velocity of the particle is the speed of light $\rightarrow v=c$
2. The magnetic field is isomagnetic. Piecewise constant in s

3. The angle of the particles with respect to the reference particle is small and can assume that $\theta=\boldsymbol{\operatorname { t a n }} \theta$

Dispersion and momentum compaction

Assume that the energy is fixed \rightarrow no cavity or damping

- Find the closed orbit for a particle with slightly different energy than the nominal particle. The dispersion is the difference in closed orbit between them normalized by the relative momentum difference

$$
\Delta \mathrm{p} / \mathrm{p}=0
$$

$$
\begin{aligned}
x & =D_{x} \frac{\Delta p}{p}, y=D_{y} \frac{\Delta p}{p} \\
x^{\prime} & =D_{x}^{\prime} \frac{\Delta p}{p}, y^{\prime}=D_{y}^{\prime} \frac{\Delta p}{p}
\end{aligned}
$$

Momentum Compaction

Momentum compaction, α, is the change in the closed orbit length as a function of momentum.

$$
\frac{\Delta L}{L}=\alpha \frac{\Delta p}{p}
$$

Generate a one-turn Map Around the Closed Orbit

A one-turn map, R, maps a set of initial coordinates of a particle to the final coordinates, one-turn later.

$$
\begin{aligned}
& x_{f}=x_{i}+\frac{d x_{f}}{d x_{i}}\left(x_{i}-x_{i, c o}\right)+\frac{d x_{f}}{d x_{i}^{\prime}}\left(x_{i}^{\prime}-x_{i, c o}^{\prime}\right)+\ldots \\
& x_{f}^{\prime}=x_{i}^{\prime}+\frac{d x_{f}^{\prime}}{d x_{i}}\left(x_{i}-x_{i, c o}\right)+\frac{d x_{f}^{\prime}}{d x_{i}^{\prime}}\left(x_{i}^{\prime}-x_{i, c o}^{\prime}\right)+\ldots
\end{aligned}
$$

The map can be calculated by taking orbits that have a slight deviation from the closed orbit and tracking them around the ring.

Transfer Matrix

One can write the linear transformation between one point in the storage ring (i) to another point (f) as

$$
\binom{x}{x^{\prime}}_{f}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{i}
$$

this is for the case of uncoupled horizontal motion. One can extend this to 4×4 or 6×6 cases.

Examples of transfer matricies

Drift of length L

$$
\boldsymbol{R}_{d r i f t}=\left(\begin{array}{ll}
1 & \boldsymbol{L} \\
0 & 1
\end{array}\right)
$$

The matrix for a focusing quadrupole of gradient $k=(\partial B / \partial x) /(B \rho)$ and of length \boldsymbol{l}_{q}

$$
\boldsymbol{R}_{\text {Quad }}=\left(\begin{array}{cc}
\cos \phi & \sin \phi / \sqrt{|k|} \\
-\sqrt{|k|} \sin \phi & \cos \phi
\end{array}\right)
$$

The matrix for a zero length thin quadrupole $K=|k| l_{q}$

$$
\boldsymbol{R}_{\text {thin-lens }}=\left(\begin{array}{cc}
1 & 0 \\
-\boldsymbol{K} & 1
\end{array}\right)
$$

Computation of beta-functions and tunes

One can diagonalize the one-turn matrix, R

$$
N_{\text {one-turn }}=A R_{\text {ore-_urun }} A^{-1}
$$

This separates all the global properties of the matrix into N and the local properties into A.

In the case of an uncoupled matrix the position of the particle each turn in x-x' phase space will lie on an ellipse. At different points in the ring the ellipse will have the same area but a different orientation.

Computation of beta-functions and tunes

The eigen-frequencies are the tunes. A contains information about the beam envelope. In the case of an uncoupled matrix one can write A and R in the following way:

$$
\boldsymbol{N}_{\text {one-turn }}=\boldsymbol{A} \boldsymbol{R}_{\text {one-turn }} A^{-1}
$$

$$
\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \phi & \cos \varphi
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi+\alpha \sin \varphi & \beta \sin \varphi \\
-\gamma \sin \phi & \cos \varphi-\alpha \sin \varphi
\end{array}\right)\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
$$

The beta-functions can be propagated from one position in the ring to another by tracking A using the transfer map between the initial point the final point

$$
\boldsymbol{A}_{f}=\boldsymbol{R}_{f i} \boldsymbol{A}_{i}
$$

This is basically how our computer models do it.

First approach - traditional one
This approach provides some insights but is limited
Begin with on-energy no coupling case. The beam is transversely focused by quadrupole magnets. The horizontal linear equation of motion is

$$
\frac{d^{2} x}{d s^{2}}=-k(s) x
$$

where $k=\frac{\boldsymbol{B}_{T}}{(B \rho) a}$, with

$$
\begin{aligned}
& B_{T} \text { being the pole tip field } \\
& \boldsymbol{a} \text { the pole-tip radius, and } \\
& \boldsymbol{B} \rho[\mathrm{T}-\mathrm{m}] \approx 3.356 \mathrm{p}[\mathrm{GeV} / \mathrm{c}]
\end{aligned}
$$

Hills equation

The solution can be parameterized by a psuedoharmonic oscillation of the form

$$
\begin{aligned}
& x_{\beta}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
& x_{\beta}^{\prime}(s)=-\sqrt{\varepsilon} \frac{\alpha}{\sqrt{\beta(s)}} \cos \left(\varphi(s)+\varphi_{0}\right)-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \sin \left(\varphi(s)+\varphi_{0}\right)
\end{aligned}
$$

where $\beta(s)$ is the beta function,
$\alpha(s)$ is the alpha function,
$\varphi_{x, y}(s)$ is the betatron phase, and
ε is an action variable

$$
\varphi=\int_{0}^{s} \frac{d s}{\beta}
$$

Review of Accelerator Physics
Beam-based Diagnostics, USPAS, June 23-27, 2003, D. Robin

Example from ELSA

Twiss Parameters and Phase Advance

In addition to β there is α and γ :

$$
\begin{aligned}
& \alpha=-\frac{\beta^{\prime}}{2} \\
& \gamma=\frac{1+\alpha^{2}}{\beta}
\end{aligned}
$$

Beam Ellipse

In an linear uncoupled machine the turn-by-turn positions and angles of the particle motion will lie on an ellipse
Area of the ellipse, $\varepsilon: ~$
$x_{\beta}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right)$
$x_{\beta}^{\prime}(s)=-\sqrt{\varepsilon} \frac{\alpha}{\sqrt{\beta(s)}} \cos \left(\varphi(s)+\varphi_{0}\right)-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \sin \left(\varphi(s)+\varphi_{0}\right)$

Transport of the beam ellipse

Beam ellipse matrix

$$
\sum_{\text {beam }}^{x}=\varepsilon_{x}\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

Transformation of the beam ellipse matrix

$$
\sum_{b e a m, f}^{x}=\boldsymbol{R}_{x, i-f} \sum_{b e a m, i}^{x} \boldsymbol{R}_{x, i-f}^{T}
$$

Transport of the beam ellipse

Transport of the twiss parameters in terms of the transfer matrix elements

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{f}=\left(\begin{array}{ccc}
C^{2} & -2 C S & S^{2} \\
-C C^{\prime} & 1+C^{\prime} S & -S S^{\prime} \\
C^{\prime 2} & -2 C^{\prime} S^{\prime} & S^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{i}
$$

Transfer matrix can be expressed in terms of the twiss parameters and phase advances

$$
\boldsymbol{R}_{f i}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{f}}{\beta_{i}}}\left(\cos \varphi_{f i}+\alpha_{i} \sin \varphi_{f i}\right) & \sqrt{\beta_{f} \beta_{i}} \sin \varphi_{f i} \\
-\frac{1+\alpha_{i} \alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \sin \varphi_{f i}+\frac{\alpha_{i}-\alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \cos \varphi_{f i} & \sqrt{\frac{\beta_{i}}{\beta_{f}}}\left(\cos \varphi_{f i}-\alpha_{f} \sin \varphi_{f i}\right)
\end{array}\right)
$$

One turn matrix

The one turn matrix can be written

$$
\boldsymbol{R}_{\text {one-turn }}=\left(\begin{array}{cc}
\cos \varphi+\alpha \sin \varphi & \beta \sin \varphi \\
-\gamma \sin \phi & \cos \varphi-\alpha \sin \varphi
\end{array}\right)
$$

Where the betatron tune, $v=\phi /\left(2^{*} \pi\right)$
By diagonizing the one turn matrix one can separate the global quantities (such as tune) from the local quantities such as β.

$$
\left(\begin{array}{cc}
\cos \varphi+\alpha \sin \varphi & \beta \sin \varphi \\
-\gamma \sin \phi & \cos \varphi-\alpha \sin \varphi
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \phi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)
$$

Dispersion

Dispersion, D, is the change in closed orbit as a function of energy

Momentum Compaction

Momentum compaction, α, is the change in the closed orbit length as a function of energy.

Chromatic Aberration

Focal length of the lens is dependent upon energy

Larger energy particles have longer focal lengths

Chromatic Aberration Correction

By including dispersion and sextupoles it is possible to compensate (to first order) for chromatic aberrations

The sextupole gives a position dependent
Quadrupole

$$
\begin{aligned}
& B_{x}=2 S x y \\
& B_{y}=S\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Chromatic Aberration Correction

Chromaticity, v^{\prime}, is the change in the tune with energy

$$
\nu^{\prime}=\frac{d \nu}{d \delta}
$$

Sextupoles can change the chromaticity

$$
\begin{aligned}
& \Delta v_{x}^{\prime}=\frac{1}{2 \pi}\left(\Delta \boldsymbol{S} \beta_{x} D_{x}\right) \\
& \Delta v_{y}^{\prime}=-\frac{1}{2 \pi}\left(\Delta \boldsymbol{S} \beta_{y} D_{x}\right) \\
& \text { where }
\end{aligned}
$$

$$
\Delta S=\left(\begin{array}{l}
\partial^{2} B_{y} / \partial x^{2}
\end{array}\right) \text { length } /(2 B \rho)
$$

Phase Stability

Let's now turn on the RF cavity
The longitudinal equations of motion become

$$
\frac{d \phi}{d t}=-\alpha \omega_{R F} \delta \quad \frac{d \delta}{d t}=\frac{e V_{R F}(t)-U(\delta)}{E_{0} T_{0}}
$$

$\phi=$ Phase of arrival at a fixed point along the closed orbit, in radians, at the RF frequency

$$
\omega_{\mathrm{RF}}=2 \pi f_{R F}=\text { Angular RF frequency }
$$

Synchrotron tune

Solving for the equations of motion the synchrotron tune, $\mathrm{f}_{\mathrm{s},}$ can be calculated

$$
\Omega_{\mathrm{s}}=\text { Angular synchrotron frequency } 2 \pi \mathrm{f}_{\mathrm{s}}
$$

$$
=\sqrt{\frac{\alpha_{\mathrm{c}} \omega_{\mathrm{RF}} \mathrm{~V}_{\mathrm{RF}}^{0} \cos \phi_{\mathrm{s}}}{\mathrm{E}_{0} \mathrm{~T}_{0}}}
$$

The longitudinal phase space

Separatrix

Radiation

The power emitted by a particle is

$$
P_{S R}=\frac{2}{3} \alpha \hbar c^{2} \frac{\gamma^{4}}{\rho^{2}}
$$

and the energy lossed in one turn is

$$
\boldsymbol{U}_{0}=\frac{4 \pi}{3} \alpha \hbar c \frac{\gamma^{4}}{\rho^{2}}
$$

Radiation damping

Energy damping:
Larger energy particles lose more energy

$$
\boldsymbol{P}_{S R}=\frac{2}{3} \alpha \hbar c^{2} \frac{\gamma^{4}}{\rho^{2}}
$$

Transverse damping:
Energy loss is in the direction of motion while the restoration in the s direction

Quantum excitation

The synchrotron radiation emitted as photons, the typical photon energy is

$$
u_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar c \frac{\gamma^{3}}{\rho}
$$

The number of photons emitted is

$$
N=\frac{4}{9} \alpha c \frac{\gamma}{\rho}
$$

With a statistical uncertainty of \sqrt{N}
The equilibrium energy spread and bunch length is

$$
\left(\frac{\sigma_{e}}{\boldsymbol{E}}\right)^{2}=1.468 \cdot 10^{-6} \frac{\boldsymbol{E}^{2}}{J_{\varepsilon} \rho} \text { and } \sigma_{L}=\frac{\alpha \boldsymbol{R}}{f_{0}} \sigma_{e}
$$

Emittance and beam size

Particles change their energy in a region of dispersion undergoes increase transverse oscillations. This balanced by damping gives the equilibrium emittances.

The beam size is then

$$
\sigma_{x}=\sqrt{\beta_{x} \varepsilon+\left(\boldsymbol{D}_{x} \frac{\sigma_{e}}{\boldsymbol{E}}\right)^{2}}
$$

