Discussion of Coupling

David Robin

Outline

- Motivation
- Coupling resonance
- Resonant Excitation

Coupling

Skew quadrupole field errors generate betatron coupling between horizontal and vertical equations of motion.

4x4 transfer matrix for a quadrupole rotated by a small angle ϕ

$$
\left(\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime} \\
\boldsymbol{y} \\
\boldsymbol{y}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\boldsymbol{q} & 1 & -2 \boldsymbol{q} \phi & 0 \\
0 & 0 & 1 & 0 \\
-2 \boldsymbol{q} \phi & 0 & \boldsymbol{q} & 1
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime} \\
\boldsymbol{y} \\
\boldsymbol{y}^{\prime}
\end{array}\right)
$$

Coupled Motion

Coupled equations

$$
\begin{array}{rlrl}
x^{\prime \prime}-K x & =-K_{s} y & y^{\prime \prime}+K y=-K_{s} x \\
K & =\frac{1}{B \rho} \frac{\partial B_{y}}{\partial x} & K_{s} & =\frac{1}{B \rho} \frac{\partial B_{x}}{\partial x}
\end{array}
$$

Analogy with springs

$$
\begin{aligned}
& m \ddot{x}+\left(k_{1}+k\right) x-k y=0 \\
& m \ddot{y}+\left(k_{2}+k\right) y-k x=0
\end{aligned}
$$

Exciting the linear coupling resonance

Resonance theory (Guignard, CERN 76-06 1976)

- Difference coupling resonance (that skew quad spatial harmonic that samples horizontal oscillations to resonantly drive vertical oscillations.)

$$
\begin{gathered}
\kappa=\frac{1}{4 \pi} \int d s K_{s} \sqrt{\beta_{x} \beta_{y}} \mathrm{e}^{i \phi_{D}} \\
\frac{\phi_{D}}{2 \pi}=\mu_{x}(s)-\mu_{y}(s)-\frac{s}{C} \Delta_{\mathrm{r}} \quad \Delta_{\mathrm{r}}=\left(v_{x}-v_{y}-N\right)
\end{gathered}
$$

- Vertical emittance near difference resonance:

$$
\frac{\varepsilon_{y}}{\varepsilon_{x}}=\frac{|\kappa|^{2}}{|\kappa|^{2}+\Delta_{\mathrm{r}}^{2} / 2}
$$

\mathcal{K} is resonance strength, $\Delta_{\boldsymbol{r}}$ is distance from resonance.

Measures of driving term

\square Tune split at difference resonance:

$$
\left(v_{x}-v_{y}\right)_{\min }=2|\kappa|
$$

Courtesy
H. Wiedemann

Resonance correction of the sum and difference resonance

To correct coupling, tweak orthogonal harmonic knobs for both difference resonance phases. Minimize tune split.
Sum resonance also generates linear coupling.

$$
\begin{gathered}
\kappa_{\text {sum }}=\frac{1}{4 \pi} \int d s K_{s} \sqrt{\beta_{x} \beta_{y}} \mathrm{e}^{i \phi_{s}} \\
\frac{\phi_{S}}{2 \pi}=\mu_{x}(s)+\mu_{y}(s)-\frac{s}{C} \Delta_{\mathrm{r}} \quad \Delta_{\mathrm{r}}=\left(v_{x}+v_{y}-N\right)
\end{gathered}
$$

Coupling correction - minimize measured vertical beam size as a function of skew quad strengths:

$$
\sigma_{y, \text { meas }}\left(K_{s, 1}, K_{s, 2}, \ldots\right)
$$

Good to use orthogonal harmonic knobs:

Vertical dispersion

$$
\eta_{y}^{\prime}{ }^{\prime}+K \eta_{y}=\frac{1}{\rho_{y}}-K_{s} \eta_{x}
$$

\square Nonzero η_{y} in dipoles generates vertical emittance.
\square Skew quads or vertical steerers generate or correct η_{y}.
$\square \eta_{y}$ knobs orthogonal to coupling knobs.

$$
\begin{aligned}
\kappa_{\eta_{y}} & =\int d s K_{s} \eta_{x} \sqrt{\beta_{y}} e^{i \phi_{\eta_{y}}} \\
\frac{\phi_{\eta_{y}}}{2 \pi} & =\mu_{y}(s)-\frac{s}{C}\left(v_{y}-5\right)
\end{aligned}
$$

Beam envelope formalism - the way our codes calculate emittance

(K. Brown et al., TRANSPORT
K. Ohmi et al., PRE 49, No 1, 1994)

Transport matrix for individual trajectories

$$
\begin{aligned}
& x_{i}(S)=R_{i j} x_{j}\left(s_{0}\right) \\
& \overrightarrow{x^{T}}=\left(x, x^{\prime}, y, y^{\prime}\right)
\end{aligned}
$$

- Beam envelope matrix, Σ

$$
\begin{aligned}
& \Psi(\vec{x})=\frac{1}{(2 \pi)^{3} \sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} \Sigma_{i j}^{-1} x_{i} x_{j}\right) \\
& \Sigma_{i j}=\left\langle x_{i} x_{j}\right\rangle \\
& \Sigma(s)=R\left(s, s_{0}\right) \Sigma\left(s_{0}\right) R^{T}\left(s, s_{0}\right)
\end{aligned}
$$

Normal mode decomposition

The 4 x 4 single turn matrix \mathbf{T} maps phase space

$$
\begin{aligned}
& x_{i}(1)=T_{i j} x_{j}(0) \\
& \boldsymbol{x}=\left(x, x^{\prime}, y^{\prime} y^{\prime}\right)
\end{aligned}
$$

\mathbf{V} transforms to normal mode coordinates

$$
\mathrm{T}=\mathrm{VUV}
$$

$$
\mathbf{U}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{cc}
\gamma \mathbf{I} & \mathbf{C} \\
\mathbf{C}^{+} & \gamma \mathbf{I}
\end{array}\right]
$$

\mathbf{A}, \mathbf{B} and \mathbf{C} are 2×2 matrices. \mathbf{A} and \mathbf{B} propagate the normal modes.
$\mathbf{V}=\mathbf{I}, \mathbf{C}=\mathbf{0}$ means the normal modes are aligned with the x and y axes.

Edwards and Teng, IEEE Trans. Nucl. Sci. 20-3, 1973
C is a measure of local coupling. Billing, Cornell Report No. CBM 85-2, 198

The C matrix

The physical interpretation of the C matrix is that for excitation of the horizontal-like normal mode the C_{22} component is a measure of the vertical motion that is in phase with the horizontal motion while the C_{12} component is a measure of the out of phase part of the vertical motion. For the excitation of the vertical-lie normal mode, C_{11} gives the in phase component and C_{12} gives the out of phase component of the horizontal motion with respect to the vertical motion.

$$
\boldsymbol{C}=\left(\begin{array}{ll}
\boldsymbol{C}_{11} & \boldsymbol{C}_{12} \\
\boldsymbol{C}_{21} & \boldsymbol{C}_{22}
\end{array}\right)
$$

Here \mathbb{C}_{12} gives the out-of-phave component, $C_{2 a}$ gives the in-plase compronernt.

- To characterise the linear Latrice newd:

Determining the coupling terms

6. In practioe nesume $\beta=\|$ design) and solve for ϕ and $C_{i j}$.

Measuring and correcting the coupling

- Before

Coupling correction at CESR-turn-by-turn BPM measurement of driven normal mode
P. Bagley and D. Rubin, PAC'87 and PAC'89.
D. Sagan, PAC'99
D. Sagan et al. PRST-AB, Vol. 3, 2000.

For viewgraphs, see D.Sagan viewgraph link from ABS'01 program.

Summary

Using resonance excitation and analyzing turn-by-turn data

- Lattice function measurements can be done quickly and accurately
- Single BPM sample time 800 msec (Cornell system)
- 100 BPM sample time 40 seconds (Cornell system)

Further reading
P. Castro et al. "Proceedings of the 1993 PAC Conference p2103 (1993)
D. Sagan et al

PRST V. 2074001 (1999)
PRST V. 3092801 (2000),
PRST V. 3102801 (2000)

Coupling correction using closed orbits

Closed orbit response between steering magnets and BPMs:

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{x}} \\
\overrightarrow{\mathbf{y}}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{M}_{2 x} x & \mathbf{M} x y \\
\mathbf{M} y x & \mathbf{M} & y y
\end{array}\right]\left[\begin{array}{ll}
\overrightarrow{\boldsymbol{\theta}} & x \\
\overrightarrow{\boldsymbol{\theta}} & y
\end{array}\right]
$$

Matices Mxy and Myx give a measure of coupling, and should be zero in an ideal decoupled machine.

Safranek \& Krinsky, PAC'93 and AIP Proc. 315, 1993.
Safranek, NIMA 388, p 27, 1997.
Steier \& Robin, EPAC'00.
Nghiem \& Tordeux, Coupling correction for the ESRF, SOLEIL internal report, 1999.

Nagaoka, EPAC'00.

METHOD OF REDUCING VERTICAL BEAM SIZE

- y_{i} is the vertical orbit shift with the $i^{t h}$ horizontal corrector
- η_{y} is the vertical dispersion
- κ is an adjustable weight for η_{y} correction
- A is the measured change in $\left(\boldsymbol{y}_{i}, \boldsymbol{\eta}_{y}\right)$ for each skew quadrupole
- $\boldsymbol{K}_{S Q}$ is the desired change in skew quadrupole strength

Before: $\sigma_{x}=385 \mathrm{~mm}, \sigma_{y}=131 \mathrm{um}$

$$
\begin{aligned}
& \beta_{x}=1.31 \\
& \beta_{y}=12.2
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{x}=1.3! \\
& \beta_{y}=12.2
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{x}=1.04 \\
& \beta_{y}=16.2
\end{aligned}
$$

After: $\sigma_{x}=218 \mathrm{~mm}, \sigma_{y}=38 \mathrm{~mm}$

-

(linear optics from closed orbits)

Again use closed orbit response matrix:

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{x}} \\
\overrightarrow{\mathbf{y}}
\end{array}\right]=\mathbf{M}\left[\begin{array}{ll}
\overrightarrow{\boldsymbol{\theta}} & x \\
\overrightarrow{\boldsymbol{\theta}} & y
\end{array}\right]
$$

The parameters of a computer storage ring model are varied to minimize the χ^{2} deviation between the model and measured response matrices (Mmod and Mmeas).

$$
\chi^{2}=\sum_{i, j} \frac{\left(M_{\text {meas }}^{, i j}-M_{\bmod , i j}\right)^{2}}{\sigma_{i}^{2}}
$$

LOCO fit parameters

PARAMETERS VARIED TO FIT THE ORBIT RESPONSE MATRIX:

56 quadrupole gradients \geqslant
56 quadrupole rolls $\%$
96 BPM gain *
48 BPM rolls 꾸
48 BPM C-parameter
90 steering magnet calibration $*$
90 steering magnet rolls $*$
$5 /$ steering magnet longitudinal center
90 steering magnet fractional energy shift \rightarrow
626 parameters
8640 data points
A Standard parameter set, uncoupled
t $=$ Standard additions for coupling

LOCO BPM parameters

元

PARAMETERS USED FOR FITTING BPM DATA

Four parameters were varied for each BPM

$$
\binom{\bar{x}}{\bar{y}}=\frac{1}{\sqrt{1-C^{2}}}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
1 & C \\
C & 1
\end{array}\right)\binom{g_{x} x}{g_{y} y} .
$$

g_{x} is the horizontal gain
g_{y} is the vertical gain
θ is the BPM roll
C is a parameter associated with two diagonal
buttons closer together than the other two

LOCO error bars

ERROR BARS ON THE FIT PARAMETERS DUE TO RANDOM ERROR IN THE MEASURED ORBIT.

The variations given in this table are the rms error bars on the fit parameters due to random orbit measurement errors. We measured the response matrix ten times, and fit a model to each response matrix. Then, for each of the parameters we took the average over the ten data sets and calculated the rms variation from the average.

Parameter	rms variation
quadrupole gradients	$.04 \%$
quadrupole rolls	.4 mrad
BPM gain	$.05 \%$
BPM rolls	.5 mrad
BPM C-parameter	.0004
steering magnet calibration	$.05 \%$
steering magnet rolls	.8 mrad
steering magnet longitudinal center	2 mm
steering magnet fractional energy shift	$3.4 \mathrm{~F}-7$
functions	$.08 \%$

Further work

For further work using closed orbits and turn-by-turn BPM data for coupling correction, see Nagaoka and Farvacque web site link from the program of this workshop.

Acknowledgements

Thanks to D. Sagan, R. Nagaoka and L. Farvacque for providing viewgraphs, and to H.D. Nuhn for helping me with viewgraphs.

Linear lattice overview-
Normal mode decomposition
The 4×4 single turn matrix T maps phase space

$$
\begin{aligned}
& x_{i}(1)=T_{i j} x_{j}(0) \\
& x=\left(x, x^{\prime}, y, y^{\prime}\right)
\end{aligned}
$$

Without coupling

$$
U=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

$$
\mathbf{A}=\left(\begin{array}{cc}
\cos \theta_{a}+\alpha_{a} \sin \theta_{a} & \beta_{a} \sin \theta_{a} \\
-\gamma_{a} \sin \theta_{a} & \cos \theta_{a}-\alpha_{a} \sin \theta_{a}
\end{array}\right)
$$

Measurement Techniques

- Vary quadrupole strengths and look at tune-changes (Monday's talk)
- Fit orbit response matrix data - (J. Safranek)
- Ping the beam and analyze turn-by-turn data
- Resonantly excite the beam and look at turn-by-turn data

Variable quadrupole strengths
Vary quadrupole strengths and look at tune-changes
β is computed via

$$
\delta v_{x, y}=\frac{\beta_{h, v}}{4 \pi} \Delta k l
$$

Disadvantages
Hysterisis - accuracy
Slow
Limited information

Ping and analyze turn-by-turn data

Ping the beam and record turn-by-turn orbit data

Advantages
Fast
Disadvantages
Decoherence

Resonant excitation

Shake the beam at a betatron sideband and observe the beam motion at the BPMs

Advantages

Fast
Not limited by damping and decoherence

Resonant excitation

Cornell system:

- shaker is phased locked to beam
- shake beam horizontally and vertically
- analyze the signals from the BPMs sequentially

Phase locked loop

Phase detector compares the frequency of beam signal of beam and local oscillator, computes the frequency difference and adjusts the oscillator

Determination of the Tunes

Input signal is digitized

- Take N consecutive turns (say 1024)
- Compute frequency using fast Fourier transform and interpolation

Determination of the Tunes

Input: Turn-by-turn measured orbit data. Analysis: Fourier transform of the turn-by-turn orbit data to compute the frequency, v

$$
\begin{aligned}
& x(n)=\sum_{j=1}^{N} \psi\left(v_{i}\right) \exp \left(2 \pi i n v_{i}\right) \\
& \psi\left(v_{i}\right)=\frac{1}{N} \sum_{n=1}^{N} x(n) \exp \left(-2 \pi i n v_{i}\right)
\end{aligned}
$$

Figure 1: Single BPM recording the excited horizontal beam motion (scale: 8 mm peak to peak, time $=88.9$ $\mu \mathrm{sec} /$ turn)

Fast Fourier transform The frequency corresponding to the largest value of ψ is taken as the approximate tune $\rightarrow|\delta v|<1 / 2 N$

Improving the resolution

The resolution can be improved by an interpolated FFT. If one assumes that the shape of the Fourier spectrum is known and corresponds to that of a pure sinusoidal oscillation with tune, $v_{\text {int }}$

$$
v_{\mathrm{int}}=\frac{1}{N}\left[k-1+\frac{A(k)}{A(k-1)+A(k)}\right], k-1 \leq N v \leq k
$$

with a sin window

$$
\begin{aligned}
& y_{k}=x_{k} \sin \left(\frac{\pi k}{N}\right), k=0,1,2, \ldots, N-1 \\
& v_{\mathrm{int}}= \frac{1}{N}\left[k-1+\frac{2 A(k)}{A(k-1)+A(k)}-\frac{1}{2}\right]
\end{aligned}
$$

(Asseo CERN PS Note 87-1 (1987))

Improving the resolution

Example: tune $=0.33224$
$x(i)=\sin (2 \pi(0.33224) i)$

Straight fft
$v=0.332$
With interpolation
$v=0.332239998$

Determination of the phases

One method (Castro et. al. PAC 1993)
Define two functions C and S using the turn-by-turn data x and analyzed frequency v.

$$
C=\sum_{i=1}^{N} x_{i} \cos (2 \pi i v) \text { and } S=\sum_{i=1}^{N} x_{i} \sin (2 \pi i v)
$$

Then the amplitude, \boldsymbol{A}, and phase μ are

$$
A=\frac{2 \sqrt{C^{2}+S^{2}}}{N} \text { and } \mu=-\cot \left(\frac{S}{C}\right)
$$

Amplitude is not as reliable as the phase

Determination of the β-functions - Method 1

Using the ideal values for the machine and the measured phases

$$
\beta_{1}^{*}=\beta_{1} \frac{\left(\cot \psi_{12}^{*}-\cot \psi_{13}^{*}\right)}{\left(\cot \psi_{12}-\cot \psi_{13}\right)} \text { and } \alpha_{1}^{*}=\alpha_{1} \frac{\left(\cot \psi_{12}^{*}-\cot \psi_{13}^{*}\right)+\cot \psi_{12}^{*} \cot \psi_{13}-\cot \psi_{12} \cot \psi_{13}^{*}}{\left(\cot \psi_{12}-\cot \psi_{13}\right)}
$$

Quantities with * are measured, those without are ideal

(Castro et. al. PAC 1993)

Error in the determination

Uncertainty in the phase

First there is noise of the BPMs, σ_{x}

The uncertainty in the phase,σ_{μ}, is then $\sigma_{\mu}=\frac{1}{A} \sqrt{\frac{2}{N}} \sigma_{x}$
phase advance error versus signal amplitude

Determination of the β-functions - Method 2

Sagan et. al. PRST 2000

Beta is determined from the phase data

$$
\frac{1}{\beta}=\frac{d \phi}{d s}
$$

The relative error in the beta function is determined

$$
\frac{\delta \beta}{\beta_{\text {design }}}=\frac{d(\delta \phi)}{d \phi_{\text {design }}}
$$

Determination of the β-functions - Method 2

 Sagan et. al. PRST 2000

Correction of the beta beating - Method 2

Location of Quadrupole Errors

Assume that one is suspicious about a certain area. Take two areas around the region and fit to free waves. See where the amplitude begins to change.

Summary

Using resonance excitation and analyzing turn-by-turn data

- Lattice function measurements can be done quickly and accurately
- Single BPM sample time 800 msec (Cornell system)
- 100 BPM sample time 40 seconds (Cornell system)

Further reading
P. Castro et al. "Proceedings of the 1993 PAC Conference p2103 (1993)
D. Sagan et al

PRST V. 2074001 (1999)
PRST V. 3092801 (2000),
PRST V. 3102801 (2000)

Linear lattice overview-
 Normal mode decomposition

The 4×4 single turn matrix T maps phase space

$$
\begin{aligned}
& x_{i}(1)=T_{i j} x_{j}(0) \\
& x=\left(x, x^{\prime}, y, y^{\prime}\right)
\end{aligned}
$$

V transforms to normal mode coordinates

$$
\begin{gathered}
\mathbf{T}=\mathbf{V U V}^{-1} \\
\mathbf{U}=\left[\begin{array}{ll}
\mathrm{A} & \mathbf{0} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{ll}
\boldsymbol{\mu} & \mathbf{C} \\
\mathbf{C}^{+} & \boldsymbol{\gamma}
\end{array}\right]
\end{gathered}
$$

\mathbf{A}, \mathbf{B} and \mathbf{C} are 2×2 matrices. \mathbf{A} and \mathbf{B} propagate the normal modes.
$\mathbf{V}=\mathbf{I}, \mathbf{C}=\mathbf{0}$ means the normal modes are aligned with the x and y axes.
C is a measure of local coupling.

```
Edwards and Teng, IEEE Trans. Nucl. Sci. 20-3, 1973
Billing, Cornell Report No. CBM 85-2, 1985
Sagan and Rubin, PRST-AB, Vol 2, 1999
```


Measures of coupling

-Touschek lifetime
\square Luminosity scan (Y. Cai, EPAC'00, p 400)

\square Quadrupole moment detectors (A. Jansson et al., CERN-PS, PAC'99)

