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Discussion of Coupling

David Robin

Outline

• Motivation
• Coupling resonance
• Resonant Excitation
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Skew quadrupole field errors generate betatron
coupling between horizontal and vertical equations 
of motion.

4x4 transfer matrix for a quadrupole rotated by a 
small angle φφφφ

Coupling
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Coupled Motion

Coupled equations

Analogy with springs
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Exciting the linear coupling resonance

� Resonance theory (Guignard, CERN 76-06 1976)

– Difference coupling resonance (that skew quad spatial harmonic 
that samples horizontal oscillations to resonantly drive vertical 
oscillations.)

– Vertical emittance near difference resonance:

κκκκ is resonance strength, ∆∆∆∆r is distance from resonance.
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Measures of driving term

� Tune split at difference resonance: 

Courtesy 

H. Wiedemann

||2)( min κνν =− yx
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Resonance correction of the sum and difference
resonance
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To correct coupling, tweak orthogonal harmonic knobs for both 
difference resonance phases.  Minimize tune split.

Sum resonance also generates linear coupling.

Coupling correction – minimize measured vertical beam size as a 
function of skew quad strengths:

,...),( 2,1,, ssmeasy KKσ
Good to use orthogonal harmonic knobs:

...),,,,,( sin,cos,sin,cos,sin,cos,, yNyNNNN sumsumdiffdiffmeasy ηη κκκκκκσ
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� CX = sin(2*pi*.3*i/50)
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Vertical dispersion

�Nonzero ηy in dipoles generates vertical emittance.

�Skew quads or vertical steerers generate or correct ηy.

�ηy knobs orthogonal to coupling knobs.

xs
y

yy KK η
ρ

ηη −=+ 1
''

)5()(
2

−−=

= �

yy

i

yxs

C

s
s

eKds

y

y

y

νµ
π

φ

βηκ

η

φ
η

η



Coupling                                                        Beam-based Diagnostics, USPAS, June 23-27, 2003, D. Robin 9

Beam envelope formalism – the way our codes
calculate emittance

(K. Brown et al., TRANSPORT
K. Ohmi et al., PRE 49, No 1, 1994)

� Transport matrix for individual trajectories

�Beam envelope matrix, ΣΣΣΣ
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Normal mode decomposition
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The 4x4 single turn matrix T maps phase space

V transforms to normal mode coordinates
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A, B and C are 2x2 matrices. A and B propagate the 
normal modes.  

V=I, C= 0 means the normal modes are aligned with the x
and y axes.

C is a measure of local coupling.

Edwards and Teng, IEEE Trans. Nucl. Sci. 20-3, 1973 

Billing, Cornell Report No. CBM 85-2, 1985

Sagan and Rubin, PRST-AB, Vol 2, 1999
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The C matrix

The physical interpretation of the C matrix is that for excitation of the 
horizontal-like normal mode the C22 component is a measure of the 
vertical motion that is in phase with the horizontal motion while the 
C12 component is a measure of the out of phase part of the vertical
motion. For the excitation of the vertical-lie normal mode, C11 gives 
the in phase component and C12 gives the out of phase component 
of the horizontal motion with respect to the vertical motion.
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Determining the coupling terms
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Measuring and correcting the coupling
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Coupling correction at CESR-
turn-by-turn BPM measurement of driven normal mode

P. Bagley and D. Rubin, PAC’87 and PAC’89.

D. Sagan, PAC’99

D. Sagan et al. PRST-AB, Vol. 3, 2000.

For viewgraphs, see D.Sagan viewgraph link from ABS’01 
program.
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Summary

Using resonance excitation and analyzing turn-by-turn data
• Lattice function measurements can be done quickly and 
accurately

• Single BPM sample time 800 msec (Cornell system)
• 100 BPM sample time 40 seconds (Cornell system)

Further reading

P. Castro et al. “Proceedings of the 1993 PAC Conference 
p2103 (1993)

D. Sagan et al 
PRST V.2 074001 (1999)
PRST V.3 092801 (2000), 
PRST V.3 102801 (2000) 
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Coupling correction using closed orbits

Safranek & Krinsky, PAC’93 and AIP Proc. 315, 1993.

Safranek, NIMA 388, p 27, 1997.

Steier & Robin, EPAC’00.

Nghiem & Tordeux, Coupling correction for the ESRF, SOLEIL internal report, 
1999.

Nagaoka, EPAC’00.

Nagaoka & Farvacque, PAC’01.

Closed orbit response between steering magnets and BPMs:
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Matices Mxy and Myx give a measure of coupling, and should be 
zero in an ideal decoupled machine.
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Direct correction of Myx
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X-Ray ring beam size reduction
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LOCO 
(linear optics from closed orbits)

Again use closed orbit response matrix:
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The parameters of a computer storage ring model are varied 
to minimize the χχχχ2 2 2 2 deviation between the model and 
measured response matrices (Mmod and Mmeas).

�
−

=
ji i

ijmodijmeas MM

,
2

2
,,2 )(

σ
χ



Coupling                                                        Beam-based Diagnostics, USPAS, June 23-27, 2003, D. Robin 20

LOCO fit parameters
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LOCO BPM parameters
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LOCO error bars
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Further work

For further work using closed orbits and turn-by-turn BPM data for 
coupling correction, see Nagaoka and Farvacque web site link from 
the program of this workshop.
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Linear lattice overview-
Normal mode decomposition
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• Vary quadrupole strengths and look at tune-changes –
(Monday’s talk)

• Fit orbit response matrix data – (J. Safranek)
• Ping the beam and analyze turn-by-turn data
• Resonantly excite the beam and look at turn-by-turn data

Measurement Techniques
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Variable quadrupole strengths

Vary quadrupole strengths and look at tune-changes

β is computed via

Disadvantages
Hysterisis – accuracy
Slow
Limited information
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Ping the beam and record turn-by-turn orbit data

Advantages
Fast

Disadvantages
Decoherence

Ping and analyze turn-by-turn data
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Resonant excitation

Shake the beam at a betatron sideband and observe the 
beam motion at the BPMs

Advantages
Fast
Not limited by damping and decoherence
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Resonant excitation

Cornell system:
• shaker is phased locked 

to beam
• shake beam horizontally 

and vertically
• analyze the signals from 

the BPMs sequentially
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Phase locked loop

Phase detector compares the frequency of beam 
signal of beam and local oscillator, computes the 
frequency difference and adjusts the oscillator
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Determination of the Tunes

� Input signal is digitized

� Take N consecutive turns (say 1024)

� Compute frequency using fast Fourier transform and interpolation
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Determination of the Tunes

Input: Turn-by-turn 
measured orbit data.

Analysis: Fourier 
transform of the turn-
by-turn orbit data to 
compute the 
frequency, νννν

Fast Fourier transform
The frequency corresponding 

to the largest value of ψψψψ is 
taken as the approximate 
tune ���� |δνδνδνδν|<1/2N
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Improving the resolution

The resolution can be improved by an interpolated FFT. 
If one assumes that the shape of the Fourier spectrum 
is known and corresponds to that of a pure sinusoidal 
oscillation with tune, ννννint

(Asseo CERN PS Note 87-1 (1987))
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Improving the resolution

Example: tune = 0.33224
x(i) = sin(2π(π(π(π(0.33224)i)

Straight fft
νννν = 0.332

With interpolation 
νννν = 0.332239998
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Determination of the phases

One method (Castro et. al. PAC 1993)
Define two functions C and S using the turn-by-turn 

data x and analyzed frequency νννν. 

Then the amplitude, A, and phase µµµµ are

Amplitude is not as reliable as the phase
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Determination of the ββββ-functions – Method 1
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(Castro et. al. PAC 1993)
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Using the ideal values for the machine and the measured phases

Quantities with * are measured, those without are ideal
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Beta beating at LEP

(Castro et. al. PAC 1993)
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Error in the determination

Uncertainty in the phase

First there is noise of the BPMs, σσσσx

The uncertainty in the phase , σσσσµµµµ, is then 1 2
xA Nµµµµσ σσ σσ σσ σ====
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Determination of the ββββ-functions – Method 2

Sagan et. al. PRST 2000

Beta is determined from the phase data

The relative error in the beta function is determined

1 d
ds
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Determination of the ββββ-functions – Method 2

Sagan et. al. PRST 2000
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Correction of the beta beating – Method 2

Before                                               After

Note the change in scale
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Location of Quadrupole Errors

Assume that one is 
suspicious about a 
certain area. Take two 
areas around the 
region and fit to free 
waves. See where the 
amplitude begins to 
change.



Coupling                                                        Beam-based Diagnostics, USPAS, June 23-27, 2003, D. Robin 44

Summary

Using resonance excitation and analyzing turn-by-turn data
• Lattice function measurements can be done quickly and 
accurately

• Single BPM sample time 800 msec (Cornell system)
• 100 BPM sample time 40 seconds (Cornell system)

Further reading

P. Castro et al. “Proceedings of the 1993 PAC Conference 
p2103 (1993)

D. Sagan et al 
PRST V.2 074001 (1999)
PRST V.3 092801 (2000), 
PRST V.3 102801 (2000) 
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Linear lattice overview-
Normal mode decomposition
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A, B and C are 2x2 matrices. A and B propagate the normal modes.  
V=I, C= 0 means the normal modes are aligned with the x and y axes.
C is a measure of local coupling. Edwards and Teng, IEEE Trans. Nucl. Sci. 20-3, 1973 

Billing, Cornell Report No. CBM 85-2, 1985

Sagan and Rubin, PRST-AB, Vol 2, 1999
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Measures of coupling 

� Touschek lifetime

� Luminosity scan (Y. Cai, EPAC’00, p 400)

�Quadrupole moment detectors (A. Jansson et al., CERN-PS, PAC’99)


