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Motivation

❏ Using resonant depolar-

ization allows an ultra

high precision measure-

ment of the beam en-

ergy

❏ Many applications: pre-

cise determination of

particle masses, ...
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Motivation
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❏ Using resonant depolarization

allows an ultra high precision

measurement of the beam en-

ergy

❏ Another application: resonance

linewidths. Example of LEP:

Precision measurement of Z �

width allowed conclusion that

only 3 lepton families with light

neutrinos exist.
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Motivation

Fig. 5. Undulator spectrum measured at 12 mm gap with a 0.2 mm × 0.2 mm FE slit.
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❏ In terms of accelerator physics it is

often important to know beam en-

ergy precisely (cross check of mag-

netic measurement data, direct mea-

surement of momentum compaction

factor with high resolution).

❏ At synchrotron light sources a rea-

sonable stability of the beam en-

ergy is important (energy stability of

undulator beams, etc.) which can

be verfied with resonant depolariza-

tion.
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Spin Motion in Electromagnetic Fields

❏ Spin motion of non radiating electron � BMT-

equation:

��� �
�� � � � � 	
 � � �

for �
 �

� � � 	
 � �
� �� � � 	
 ��� � �� �

� � � � � � � � � 	
� �
� � � �

� : gyromagnetic anomaly� � �� � �� �! " � #%$ &

for electrons and �� '� ! ()  for protons

❏ flat ring � * + , � ��

❏ only vertical component of spin is stable
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Self Polarization in Lepton Rings

❏ radiating leptons � polarization buildup (Sokolov-Ternov effect):

� � �
�
��� �$

�� ��	



, �� ��	 � 
 � &�
�� �� �� � ���

���
❏ has been observed at most lepton storage rings that have looked for the effect.
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Simulating equilibrium polarization
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❏ Even though the polarization

buildup time for a given ring

strongly depends on the beam en-

ergy, it has about the same order of

magnitude for most lepton storage

rings.

❏ Reason is that it also scales with the

bending radius and machines with

higher energy typically have to have

much larger bending radius to keep

equilibrium emittance small and SR

losses acceptable.
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Depolarizing Resonances

❏ Depolarization due to resonant coupling of

spin precession with horizontal magnetic

fields

❏ intrinsic resonances: vertical betatron os-

zillations � horizontal magnetic fields in

quadrupoles (and sextupoles ...)

resonance condition: �� � ��� � � �� �

❏ imperfection resonances: magnet errors

(field- and position errors) � closed orbit dis-

tortions

resonance condition: �� � �

❏ weaker resonances: gradient errors, coupling,

sextupoles, synchrotron satellites
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Self Polarization and Resonances

❏ Equilibrium of self polarization and

resonances depends on energy.

❏ Resonance strength increases with en-

ergy.

❏ Imperfection resonance strength

scales with the closed orbit error

❏ Intrinsic resonance strengths scales

with the vertical emittance
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Simulating equilibrium polarization
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❏ Using spin tracking codes, one can

calculate the equilibrium between

polarizing and depolarizing effects.

❏ Using the simulations, one can op-

timize the correction techniques (or-

bit correction, harmonic spin match-

ing, coupling correction, ...)

❏ Correction is much faster, if one has

a good model of the machine lattice

(predictive spin mathcing).
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Polarimeters

❏ All polarimters use asymmetry in scattering cross sections

❏ Types include Compton-polarimeters (laser photons head

on onto beam, spatial asymmetry in backscattered photons),

Møller polarimeters (polarized electrons on polarized elec-

trons mostly in target foils), Mott polarimeters, ...

❏ Storage rings typically use Compton polarimeters (nearly

non-destructive).

❏ In storage ring where the Touschek lifetime contriution is

significant one can use a very simple polarimeter: Touschek

scattering of two electrons within a bunch is Møller scatter-

ing. Møller scattering cross section depends on polarization

(polarized beams have longer Touschek lifetime!).

❏ depolarization changes (reduces) Touschek lifetime by up

to 20%

Christoph Steier LAWRENCE BERKELEY NATIONAL LABORATORY USPAS, UCSB, June 23-27, 2003



Energy Calibration/Touschek Lifetime
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❏ Møller scattering cross section

depends on polarization

❏ depolarization changes (re-

duces) Touschek lifetime by up

to 20%

❏ experimentally simple:

stripline kicker for tune mea-

surement is sufficient + gamma

telescope

❏ partial depolarization allows

for ‘fast‘, multiple measure-

ments
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Energy Calibration II
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❏ partial depolarization allows better accuracy in sweeping measurements

❏ energy stable to a about � � " � #$ � within a week without rf-frequency feedback -

much better with ...
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RF Frequency Feedback

2 4 6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Months since September 1, 2001

C
ha

ng
e 

in
 r

in
g 

ci
rc

um
fe

re
nc

e 
[m

m
]

Superbend    
Installation 
Shutdown     

Winter     
Holiday ’01

April ’02
Shutdown 

November ’02
Shutdown    

Winter      
Holiday ’02 

❏ Circumference of ring changes (temper-

ature inside/outside, tides, water levels,

seasons, differential magnet saturation, )

❏ RF keeps frequency fixed - beam energy

will change

❏ Instead measure dispersion trajectory

and correct frequency (at ALS once a

second)

❏ Can see characteristic frequencies of all

the effects in FFT (8h, 12h, 24h, 1 year)

❏ Verified energy stability (a few 10$ 
 )

with resonant depolarization
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Applications: Momentum Compaction Factor
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❏ resonant depolarization allows

a precise measurement of the

momentum compaction factor

❏ � � � �� ! ( � # � # #) � " � #$ &

❏ for some machines, it could be

used to measure nonlinear �

terms
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Applications: LEP
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The tide effect:
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❏ Many electroweak precision measurements

❏ Precise energy calibration essential

❏ Found many interesting effects: Tides, Lake

Geneva, TGV, ...
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Applications: LEP

LEP Energy Calibration
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LEP Energy Calibration

The tide effect:
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❏ Average tides of oceans about 0.5 m (locally much

larger)

❏ Average tidal variation of solid ground about 1/3 of

that!

❏ Tides cause local change in earth radius - change in

ring circumference - beam energy change (scales only

with momentum compaction factor, not with the size

of the machine - effect is about equally strong at light

sources like ESRF as it was ta LEP).

❏ For LEP this was very significant effect, far larger than

precision of energy needed

❏ Measurements with resonant depolarization agreed

very well with tidal predictions
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LEP: TGV effectLEP Energy Calibration

The NMR puzzle

Measurement of Nuclear Magnetic Resonance
(NMR) probes:
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❏ Large noise in magnetic dipole field found

❏ Stopped overnight

❏ Intensive search - accidental discovery (on

French holiday)

❏ Return currents of TGV

LEP Energy Calibration

The famous train effect:
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LEP: TGV effect

❏ Measured distribution of

current on LEP vacuum

chamber

❏ Reconstructed path of re-

turn currents from TGV

LEP Energy Calibration

The famous train effect in a cartoon:
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Other energy measurement methods

submitted to Nucl. Instr. and Meth. A
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xy-stage

storage ring straight section
with electron beam

mirror chamber
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power attenuator
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Fig. 1: Schematic drawing of the experimental set-up at the PTB Radiometry
Laboratory at BESSY II (not to scale)
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Fig. 2: Measured spectrum of the backscattered photons with the electron storage
ring operated at an reduced electron beam energy of about 900 MeV. The cut-off
edge of the Compton spectrum can be clearly seen. To the left of the edge, two lines
from the 60Co-source used for the detector energy calibration can be clearly
distinguished. The result of the above measurement was 918.53(6) MeV.

❏ Measuring energy spectrum of compton

backscattered (laser) photons

❏ high energy edge is well defined (laser pho-

ton energy + �
� Lorentz boost)

❏ Addition of line spectrum from radioactive

decay allows easy online calibration

❏ Advantage is relatively fast measurement -

No polarizatiob necessary

❏ Disadvantage is lower precision
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Other energy measurement methods

Fig. 5. Undulator spectrum measured at 12 mm gap with a 0.2 mm × 0.2 mm FE slit.
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❏ Measuring the photon energy spectrum

from an undulator allows fast beam en-

ergy measurement (with moderate reso-

lution)

❏ Magnetic field data of undulator has to

be very well known

❏ Monochromator has to be well under-

stood

❏ Another possibility is to caclulate the

beam energy based on magnetic mea-

surements (either off-line or on-line with

NMR probes) plus the readings of BPMs
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Summary

❏ Energy calibration is a (very high) precision tool to measure some global

lattice characteristics and study long term behaviour of accelerators.

❏ The most precise application uses reonant depolarization of a beam which

typically was self-polarized because of Sokolov-Ternov effect.

❏ Was essential for precise determination of many particle masses and for the

determination of the Z0 width, which allowed to conlude that only three

(light) lepton generations exist.

❏ Allows absolute measurement of momentum compaction factor (otherwise

fairly difficult to measure) with very high precision.
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