Model Independent Analysis

o Summary of work done by C. X. Wang, J. Irwin,
Y.T. Yan, X. Huang and many others.

e Uses variations in successive BPM readings to
debug accelerators.

» The correlations between BPM readings along a
linac are used to improve BPM noise rejection.

* First developed for linacs. More recently
extended to storage rings.

 For storage rings, much the same analysis as
phase advance measurements, but with lower
noise betatron phase measurement.
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Apply SVD to the data matrix.

Singular Value Decomposition (SVD)

Mathematically, SVD of matrix B yields i
i |
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where Upyp = [y, up| and Vyryar = [t7.: -, ¥pg] are orthogonal matrices,
Spxarisa chagnnal matrix with nonnegative o; along the diagonal

e ¢, is the i-th largest singular value of B

e d = rank(B) is the number of nonzero singular values.

o the vector u; (v;) is the i-th left (right) singular vector.
u’s and v’s form orthogonal basis of the various spaces of B.

C.X. Wang
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SVD and eigenvalue problems of real symmetric matrices

(BTB)V=VS* and (BB U=US?
Therefore,
e the column vectors of V are eigenvectors of the real symmetric matrix B'B

¢ the column vectors of U are eigenvectors of the real symmetric matrix BBY

 cigenvalues are given by o7 's.

Also, the covariance matrix of BPM readings can be decomposed as

Cg=VS*VT
Since Cpg is a stationary quantity, V' and S should be repeatable. (but not U)

e BTB is the covariance matrix.

* If no real motion, just BPM noise, then singular values
are simply BPM noise levels.

 With real motion added, get additional larger singular
values associated with real motion.

C.X. Wang
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Meaning of singular values in MIA

d F "-"EII:BPM[] ﬂﬂ‘-’{EPM[g)
BTH — Z vl = cov(BPM3;) var(BPM:)

=1

Comparing the diagonal terms we have

d
var(BPMy) = ) of vi(k)?, k=1,--,M

=1

Since the v vectors are normalized to 1, we have

C.X. Wang

d M
o7 = M var(BPM readings due to ith mode) ~and Y o7 =) var(BPMj)
k=1

i=1

where the overhead bar means average over all M BPMs.
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SYD noise

Sifigtlan-Value Decomposition: (SVD)
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MIA In rings, three techniques
under development

« All three measure turn-by-turn driven oscillations to
measure betatron phase advances.

 PEP-Il (&ATF), Y. Yan, J. Irwin, Y. Cal et al.

— Include measurement of transfer matrices between
BPMs

« APS, C.X. Wang
— Untangling mixed modes from PCA

 Fermilab, X. Huang
— Applying ICA to untangle mixed modes.

Model Independent Analysis Beam-based Diagnostics, USPAS, Jan. 16-20, 2006, J. Safranek



MIA for PEP-Il and ATF

Has been used to correct beta
beating at PEP-II and coupling at
ATF.

|dentifies two principle modes for
the two phases of horizontal and
vertical betatron modes, including
coupling.
Use these modes to derive
betatron phase advance and R12,
R32, R14, R34 elements of the
transfer matrix between BPMs

— Fit model to above

— Include BPM gains and coupling in

fit

Issues with coupling between
measured modes; see both normal
mode frequencies in both modes.

Model Independent Analysis

A0

2
. |'| sl " il T
dl L ||||- Jli | | 1N | |-I || || |
=3 —
B 100 200 e
4
v o ML sawm iR Dl h' L
G |'1 Lads ||'I I | I| b .I||.|!
1
o 100 200 00
m
-
o 100 200 ;00
=
|
o 100 200 300

=05

Figure 1:

BPN Sequenne numies

400

ann

400

Ful Fuk
[}

BPM Sequence number

k] 200 ano 400
i
i {THT T
!|l"“”'"r |
M

10 200 i 400
|

mn 200 Jno ano

|
7RIS TRIAT
100 200 300 400
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Summary of variables fit for PEP-II

* All quad families normal components.

 All skew (global and local) quad’s skew components.

« All sextupole feed-downs’ normal and skew components.
« All BPM gains and cross couplings.

» Additionally, all quad skew components and all skew quad normal
components.

 Also form all these variables into a sequence (a single
vector with data-structure pointers).

Yiton Yan
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Enhanced SVD-enhanced Least Square fitting

we form all variables and all measured hnear orbit
derivatives mto one-dimensional arrayvs, 1.e. vectors,
represented by X and Ym respectively.  The corre-
sponding derivatives from the model, which are 1m-
plicit functions of all the fitting variables, are also
formed mto a vector functional form given by f’[ﬁ’l
Denoting the reasonably gnessed variable values as 7,

Yiton Yan
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|ICA method

e PCA uses SVD on matrix B, and find
eigenvectors and eigenvalues of B'B and
BB

« |CA also diagonalizes B(t)"B(t+n), the
unequal time covariance matrices, with
multiple choices of n, the number of turns
of time Inequality.

 In this way, It forces the principal
components to have separate frequencies.

Model Independent Analysis Beam-based Diagnostics, USPAS, Jan. 16-20, 2006, J. Safranek



Decoupling mixed modes of PCA MIA with ICA
Comparison of the ICA and PCA

In this simulation, one sinusoidal signal is inserted to one of the BPMs to simulate a bad
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However, the PCA method mixes the inserted signal with
the betatron modes when the singular values are close.
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L inear lattice function measurements

50

-=-hori
-3-vert

spatial
pattern

Phase
advance

c,, =0.03

9

e Beta function and phase advance (DC beam)
0.2 - . . 4 - . - -
0.1
Temporal -
pattern ¢ ° <
0.1
- . " A _4 1 . L \
02 50 100 150 200 10 20 30 40
turn number BPM index
50 1.5 ; 7 13
» measured o o8 1 Blag 77 o s
-~-model O ETg b 73 o1 ST 1 NE] (1 L
30} ET ik
Beta = Ll <
fUhCTlOn 10_ '-"."__-' '-.??.
05-—006 % 20 30 40 50 | ' ' |
B BPM index 010 20, 30 40

Model Independent Analysis

Horizontal beta function and phase advance

X. Huan
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Betatron and Synchrotron Tunes
e Betatron and synchrotron tune measurements.
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The clean coherent betatron modes and the interpolated FFT

allows betatron tune measurements to high accuracy: <=0.0005
with 250 turns.

X. Huang
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Betatron Tune Shifts and Transverse Impedance

Vertical betatron tune is measured under different intensity levels.
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The tune depression due to increased intensity comes from the
imaginary part of transverse impedance.

X. Huang
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Transverse Impedance
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The red curve is calculated by assuming image currents in main
magnhets and image charge in vacuum pipe. Resistive wall
impedance is estimated to be less important.

X. Huang
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Chromaticity Measurement

Chromaticity is measured by monitoring the tune shifts
while the beam orbit is swept from one side of the
vacuum pipe to the other side.

The total change of momentum deviation is about 2.5E-3
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Summary of ICA at Fermilab

 The ICA method is an useful tool for turn-by-turn data
analysis which should find application in other
synchrotrons.

 For the Fermilab Booster, the lattice functions are
measured from turn-by-turn data.

* The lattice model is verified with different setting (one or
two re-positioned doglegs)

 We measured transverse impedance and chromaticity in
the cycle through betatron tune shifts.

 Weak synchrotron motion is observed in BPM turn-by-
turn data.

 The improved understanding of the Booster will help
future upgrades.
X. Huang
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