Beam-based nonlinear orbit corrections in colliders

Fulvia Pilat Y. Luo. N. Malitsky, V. Ptitsyn

PAC2005, Knoxville May 16-20, 2005

outline

Introduction

Brief overview, non-linear optics correction methods

IR bump correction method – theory

general formulation, valid to all orders examples: normal and skew sextupole and octupole

IR bump corrections – experience in operations

experimental set-up, machine preparation results for sextupole, skew sextupole, octupole and higher-orders

validation: lifetime, dynamic aperture

Conclusions and outlook

Non-linear optics corrections: motivation

Limitations collider dynamic aperture (→beam lifetime)

- Non-linear effects from magnets, in collision from IR magnets
- Beam-beam (in collision)

Correction of **non-linear optics errors**→ aperture, lifetime,

'cleaner' operations (i.e. steering bumps closure)

Operation experience in RHIC:

- Measured effect on lifetime correctors on/off
- Measured dynamic aperture correctors on/off

ß* squeeze from 1m to 0.85m during beams studies (Run-4), made
operational during the Cu-Cu operations (Run-5) this year

Future potential: with e-cooling \rightarrow reduced $\varepsilon \rightarrow$ dynamic β^* squeeze to 0.5m \rightarrow extra ~50% increase in luminosity

Nonlinear optics correction methods

'dead-reckoning'

compensate for known or measured errors

Examples:

- action-kick minimization (*Wei*): order by-order prescription, minimize action kick from IR error terms
- driving terms compensation (*Farthouk*) needs 2 knobs for each multipole to cancel driving terms of selected resonances

'beam-based'

Use beam measurements to correct for unknown errors

Examples:

- IR bumps method (Koutchouk, Pilat, Ptitsyn, Luo): measure and fit tunes dependence from IR orbit bumps
- Frequency analysis (Schmidt, Tomas, Bartolini,...): harmonic analysis (interpolated FFT's: 1/N→1/N²) of BPM turn-by-turn data, resonance driving terms

resonance driving terms compensation \rightarrow global correction local orbit bumps \rightarrow localized correction (IR's)

IR bump method – general formulation

Local orbit distortion in a region with non-linear field \rightarrow feed-down effects to lower order harmonics Feed-down to 0 (closed orbit) and 1st order (tunes) most useful (measurable) Effect α size of orbit excursion (IR 3-bump. A_{bump} amplitude at the bump center Tune shift: from feed-down to gradient, or from linear coupling

Tune shift ΔQ and linear coupling term Δc as a function of bump planes and multipoles:

$$\begin{split} &\Delta \mathcal{Q}(H, norm) = g(b_n, x_{co}) \\ &\Delta \mathcal{Q}(V, skew, even) = -1^{n/2}g(a_n, y_{co}) \\ &\Delta c(V, norm, even) = -1^{(n-1)/2}h(b_n, y_{co}) \\ &\Delta \mathcal{Q}(V, norm, odd) = -1^{(n-1)/2}g(b_n, y_{co}) \\ &\Delta c(H, skew) = h(a_n, x_{co}) \\ &\Delta c(V, skew, odd) = -1^{(n+1)/2}h(a_n, y_{co}) \end{split}$$

$$g(c_n, z_{oo}) = \frac{n}{4\pi} \frac{1}{B\rho} \int \beta_x B_N c_n \frac{Z_{oo}^{n-1}}{R^n} ds$$
$$h(c_n, z_{oo}) = \frac{n}{2\pi} \frac{1}{B\rho} \int \sqrt{\beta_x \beta_y} B_N c_n \frac{Z_{oo}^{n-1}}{R^n} e^{i(\mu_x - \mu_y)} ds$$

Bump	b2	az	bz	az	b₄.	a.	<u>b</u> s
H	ΔQ	Δc	ΔQ	Δc	ΔQ	Δc	ΔQ
V	Δc	ΔQ	ΔQ	Δc	Δc	ΔQ	ΔQ

$$\left|C_{0}+\Delta c\right|^{2}/4\Delta Q_{\rm sp}<<\Delta Q$$

Condition for tune shift from coupling to be negligible

IR bump method – order by order

We demonstrated that order-by –order the IR bump method is equivalent to the compensation of the relevant resonance driving terms (assumption that phase advance in triplets is ~0 and between triplets is π)

total tune shift from **sextupoles** in a IR region:

Horizontal IR bump 2 sextupole correctors

£

Normal sextupole

 $\begin{cases} \Delta Q_x \propto \left(\sum_{L} k_2 \beta_x^{3/2} ds - \sum_{R} k_2 \beta_x^{3/2} ds\right) \cdot \frac{A_{bump}}{4\pi \beta_{xc}^{1/2}} \\ \Delta Q_y \propto - \left(\sum_{L} k_2 \beta_x^{1/2} \beta_y ds - \sum_{R} k_2 \beta_x^{1/2} \beta_y ds\right) \cdot \frac{A_{bump}}{4\pi \beta_{xc}^{1/2}} \end{cases}$

Skew sextupole

total tune shift from **skew sextupoles** in a IR region:

Vertical IR bump 2 skew sextupole correctors

$$\begin{cases} \Delta Q_{x} = \frac{1}{4\pi} \sum_{x} k_{2s} \beta_{x} y_{co} ds \ \infty \left(\sum_{L} k_{2s} \beta_{x} \beta_{y}^{1/2} ds - \sum_{R} k_{2s} \beta_{x} \beta_{y}^{1/2} ds \right) \frac{A_{\text{tamp}}}{4\pi \beta_{yc}^{1/2}} \\ \Delta Q_{y} = -\frac{1}{4\pi} \sum_{x} k_{2s} \beta_{y} y_{co} ds \ \infty - \left(\sum_{L} k_{2s} \beta_{y}^{3/2} ds - \sum_{R} k_{2s} \beta_{y}^{3/2} ds \right) \frac{A_{\text{tamp}}}{4\pi \beta_{yc}^{1/2}} \end{cases}$$

IR bump method – order by order

Normal octupole

Horizontal <u>and</u> vertical IR bumps needed

Minimum of 3 octupole correctors/IR needed

total tune shift from **octupoles** in a IR region:

$$\begin{split} & \left[\Delta Q_x = \frac{1}{8\pi} \sum k_3 \beta_x x_{co}^2 ds \ \propto \left(\sum_L k_3 \beta_x^2 ds + \sum_R k_3 \beta_x^2 ds \right) \frac{A_{xbump}^2}{8\pi \beta_{xc}} \right. \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y x_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_x \beta_y ds + \sum_R k_3 \beta_x \beta_y ds \right) \frac{A_{xbump}^2}{8\pi \beta_{xc}} \right] \\ & \left[\Delta Q_x = \frac{1}{8\pi} \sum k_3 \beta_x y_{co}^2 ds \ \propto \left(\sum_L k_3 \beta_x \beta_y ds + \sum_R k_3 \beta_x \beta_y ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_x y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_x \beta_y ds + \sum_R k_3 \beta_x \beta_y ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y^2 ds \right) \frac{A_{ybump}^2}{8\pi \beta_{yc}} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y^2 ds + \sum_R k_3 \beta_y ds \right) \frac{A_{ybump}^2}{8\pi \beta_y ds} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y y_{co}^2 ds \ \propto - \left(\sum_L k_3 \beta_y ds \right) \frac{A_{ybump}^2}{8\pi \beta_y ds} \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds \right] \\ & \left[\Delta Q_y = -\frac{1}{8\pi} \sum k_3 \beta_y ds$$

Skew octupole

Horizontal + vertical (<u>diagonal</u>) bump needed 2 skew octupole Correctors/IR needed total tune shift from skew octupoles in a IR region:

$$\begin{cases} \Delta Q_{x} = \frac{1}{4\pi} \sum_{x} k_{3s} \beta_{x} x_{as} \gamma_{as} ds \, \infty \left(\sum_{L} k_{3s} \beta_{x}^{3/2} \beta_{y}^{1/2} ds + \sum_{R} k_{3s} \beta_{x}^{3/2} \beta_{y}^{1/2} ds \right) \frac{A_{\text{tump}}^{P}}{4\pi \beta_{x}^{1/2} \beta_{y}^{1/2}} \\ \Delta Q_{y} = -\frac{1}{4\pi} \sum_{x} k_{3s} \beta_{y} x_{as} \gamma_{as} ds \, \infty - \left(\sum_{L} k_{3s} \beta_{x}^{1/2} \beta_{y}^{3/2} ds + \sum_{R} k_{3s} \beta_{x}^{1/2} \beta_{y}^{3/2} ds \right) \frac{A_{\text{tump}}^{P}}{4\pi \beta_{x}^{1/2} \beta_{y}^{1/2}} \end{cases}$$

RHIC IR's - layout

BROOKHAN

NATIONAL LABORATORY

/ F N

6 o'clock IR 8 o'clock IR: Dipole correctors Skew quadrupoles Nonlinear

Other IR's: dipole correctors Skew quadrupoles (nonlinear layers exist but no PS yet)

Beam-based non-linear corrections in colliders

PAC2005

IR bumps: schematics

IR bumps used for correction:

- Bump across the IR: 3 dipole corrector + anti-symmetry of optics used for operational corrections
- Bump over single triplet: used mostly for tests and studies
- •Angle bumps: used for orbit steering in operations

IR bumps: application

Tune measurements Phase Lock Loop 245 MHz system In high-resolution mode < 5x10⁻⁵ Data at 100 Hz Bump time: 60 sec

Orbit data were used for IR linear coupling Correction

For sextupole and higher only tune shift data

Beam-based non-linear corrections in colliders

PAC2005

Experimental set-up

- The 2 rings must be longitudinally separated, by at least 3 RF buckets to avoid beam-beam effects.
- Measurements are performed at the beginning of a ramp, when the transverse emittance is small and with 6 bunches, to avoid risking magnet quenches in case of accidental beam loss.
- The machine must be well decoupled, with coupling corrected to a minimum tune separation $\Delta Q_{min} < 0.002$.
- The tunes are separated before the measurements by 0.01-0.012 to further minimize coupling effects.
- Good overall orbit correction with horizontal and vertical orbit rms < 1mm, and good (<2mm) centring of the orbit in the IR triplets, to insure symmetry during the measurement.
- The choice of bump amplitude is a critical one. Large bump amplitude is desirable to enhance the measured effect but this must be weighted with practical aperture considerations.

Maximum bump amplitudes of **5mm** proved enough to resolve sextupole

effects, **10mm** for octupole effects, and **15mm** for higher orders.

Sextupole corrections

IR	Run-3	Run-3	Run-4	Run-4	Run-5
sextupole	₫-Au	p-p	Au	p-p	Cu
corrector	β* 2m	$\beta^* 1m$	$\beta^* 1m$	$\beta^* 1m$	β* 0.9m
	4500A	2000A	4500A	2000A	4500A
Yo5-sx3	-0.0014	-0.003	-0.006	-0.001	-0.007
Yi6-sx3	+0.004	0.0	+0.003	+0.001	+0.0035
Yi7-sx3	+0.003	+0.007	+0.0005	+0.001	+0.003
Yo8-sx3	-0.01	-0.038	0.0	-0.0012	-0.003
Bi5-sx3	+0.0012	+0.001	+0.0011	-0.0022	+0.0025
Bo6-sx3	-0.004	-0.003	-0.001	+0.001	-0.005
Bo7-sx3	0.0	-0.003	0.0	-0.007	-0.005
Bi8-sx3	0.0	-0.0005	0.0	+0.002	+0.0025

BRUUKHAVEN NATIONAL LABORATORY Beam-based non-linear corrections in colliders PAC2005

Skew-sextupole

Sextupole corrections in IR8: Cu Run-5 (this year) Skew sextupole correction (after correction of normal sextupole). Vertical bump, 2 skew sextupoles Needed for correction.

NATIONAL LABORATORY Beam-based non-linear corrections in colliders PAC2005

octupole

On-line polynomial fitting of tune shift vs. bump amplitude data Example: 2nd order term (octupole) before and after test correction at an individual triplet. 10mm bump

Higher-orders

2nd (octupole), 3rd (decapole) and 4th (dodecapole) coefficients of tune shift after linear (sextupole) correction

BROOKHAV

Needed 15mm IR bump – practical limit at store with present emittance Of 10-12 π mm-mrad and β^* of 85mm

PAC2005 Beam-based non-linear corrections in colliders NATIONAL LABORATORY

Dynamic aperture data – yellow ring

Model

Comparison of effect based on **measured IR magnets data** and beam-based measurements Identified sextupole **b2 errors in D0 magnets** (IR separation Dipoles) as the main source of measured sextupole effect

IR section	Measurement by	Off-line
	IR bump	Model
Blue IR6	-1.1 10 ⁻³	-4.2 10 ⁻³
Blue IR8	-2.0 10 ⁻³	-2.4 10 ⁻³
Yellow IR6	-3.9 10 ⁻³	-3.6 10 ⁻³
Yellow IR8	-0.5 10 ⁻³	-2.2 10-3

conclusions

- Beam-based operational corrections have been demonstrated at RHIC
- IR local coupling and sextupole correction, part of routine machine set-up
- Octupole, higher-orders in progress (beam experiments)
- NOT a "critical system" but measured improvements in lifetime, dynamic aperture, helped in 15% ß* squeeze
- The method is equivalent to resonance driving term compensation – order-by-order – when the error sources are local (IR)
- Parallel activity on going in deriving non-liner optics corrections from BPM turn-by-turn analysis techniques

