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Resonance driving term analysis

• Outline:
�Introduction

• NAFF 
• perturbative theory of betatron motion
• SVD fit of lattice parameters

� DIAMOND Spectral Lines Analysis
• Linear Model
•Nonlinear Model

Christoph Steier
Lawrence Berkeley National Laboratory
Most of the material in this lecture from

Ricardo Bartolini (Diamond), 
Frank Schmidt, R. Tomas (CERN) , …

Studies on Lattice Calibration With Frequency Analysis of BetatrStudies on Lattice Calibration With Frequency Analysis of Betatron on 
MotionMotion
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Real Lattice to Model Comparison

Accelerator 

Model

• Closed Orbit Response Matrix (LOCO–like) 

• Frequency Map Analysis

• Frequency Analysis of Betatron Motion (resonant driving terms)

Accelerator 
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Frequency Analysis of Betatron Motion  
and Lattice Model Reconstruction (1)

Accelerator Model

• tracking data at all BPMs

• spectral lines from model (NAFF)

• build a vector of Fourier coefficients

• beam data at all BPMs

• spectral lines from BPMs signals (NAFF)

• build a vector of Fourier coefficients

Accelerator
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Frequency Analysis of Betatron Motion  
and Lattice Model Reconstruction (2)

Least Square Fit (SVD) of accelerator parameters �

to minimize the distance �2 of the two Fourier coefficients vectors

MODEL � TRACKING� NAFF � 

Define the vector of Fourier Coefficients – Define the parameters to be fitted

SVD � CALIBRATED MODEL

θMA =∆• Compute the “Sensitivity Matrix” M

• Use SVD to invert the matrix M

• Get the fitted parameters AUWV T ∆= − )( 1θ

WVUM T=
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DIAMOND Layout
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NAFF algorithm – J. Laskar (1988)
(Numerical Analysis of Fundamental Frequencies)

Given the quasi–periodic time series of the particle orbit (x(n); px(n)), 

• Find the main lines with the previous technique for tune measurement

� ν1 frequency, a1 amplitude, φ1 phase;

• build the harmonic time series

• subtract form the original signal

• analyze again the new signal z(n) – z1(n) obtained
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Measurement of Resonant driving terms of non linear resonances
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The decomposition allows the
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Frequency Analysis of Non Linear Betatron Motion
A.Ando (1984), J. Bengtsson (1988), R.Bartolini-F. Schmidt (1998)
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Each resonance driving term sjklm contributes to the Fourier coefficient of a well 
precise spectral line 

can be compared to the perturbative expansion of the non linear betatron motion
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The quasi periodic decomposition of the orbit
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Spectral Lines for DIAMOND low emittance lattice 
(.2 mrad kick in both planes)

Spectral Lines detected with 
NAFF algorithm

e.g. Horizontal:

• (1, 0) 1.10 10–3 horizontal tune

• (0, 2) 1.04 10–6 Qx – 2 Qz

• (–3, 0) 2.21 10–7 4 Qx

• (–1, 2) 1.31 10–7 2 Qx + 2 Qz

• (–2, 0) 9.90 10–8 3 Qx

• (–1, 4) 2.08 10–8 2 Qx + 4 Qz
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Longitudinal Variation of Driving Terms
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Early (2000-2002) Work: SPS experiments
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Linear Coupling in SPS
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Sextupole Driving Terms
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Sextupole Driving Terms with Extraction Sext.
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Sextupole Driving Terms with Extraction Sext.
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Amplitude of Spectral Lines for low emittance DIAMOND lattice 
computed at all the BPMs

• The amplitude of the tune spectral line replicates the β functions

• The amplitude of the (– 2, 0) show that third order resonance is 
well compensated within one superperiod. Some residual is left 
every two cells (5π/2 phase advance)

Main spectral line (Tune Qx) (-2, 0)  spectral line: resonance driving term h3000 (3Qx = p) at all BPMs
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Example: DIAMOND with random misalignments (100 µµµµm r.m.s ) in 
chromatic sextupoles to generate linear coupling

Tune Z in horizontal motion Tune X in vertical motion

0.1 mrad kick in both planes
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The coupled linear motion in each plane can be 
written in terms of the coupling matrix
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e.g. for the horizontal motion

a3 and a4 depend linearly on cij

• two frequencies (the H tune and V tune)

• no detuning with amplitude
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(0,1) spectral line for low emittance DIAMOND lattice computed at all the 
BPMs (V misalignment errors added to chromatic sextupoles)

The amplitude of the (0, 1) spectral line replicates well the s dependence of the difference 
resonance Qx – Qz driving term

The resonance driving term h1001
contributes to the (0, 1) spectral line in 

horizontal motion
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DIAMOND Spectral Lines Analysis

� Horizontal Misalignment of sextupoles (� – beating)
� Vertical Misalignment of sextupoles (linear coupling)
� Gradient errors in sextupoles (non linear 
resonances)
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Horizontal misalignment of a set of 24 sextupoles with 100 µµµµm 
rms (ββββ - beating correction)

The generated normal quadrupole components introduce a � - beating.

• we build the vector of Fourier coefficients of the horizontal and vertical tune line

• we use the horizontal misalignments as fit parameters

H tune line

(no misalignments)

V tune line 

(no misalignments)

H tune line 

with misalignments

V tune line 

with misalignments
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SVD on sextupoles horizontal misalignments

We build the vector ( ))1,0()1,0(
1

)0,1()0,1(
1 ...... V

NBPM
VH

NBPM
H aaaaA =

( )� −=
j

MeasuredModel jAjA 22 )()(χ
containing the amplitude of the tune lines in the two planes at all BPMs

We minimize the sum

Example of SVD principal valuesχ2 as a function of the iteration number
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Fitted values for the 24 horizontal sextupole misalignments 
obtained from the SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

misalignments

with 

misalignments

with 

misalignments 
and corrections
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Fitted values for the 72 horizontal sextupole misalignments 
obtained from the SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

misalignments

with 

misalignments

with 

misalignments 
and corrections
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Vertical misalignment of a set of 24 sextupoles with 100 µµµµm 
rms (linear coupling correction)

The generated skew quadrupole components introduce a linear coupling.
• we build the vector of Fourier coefficients of the (0, 1) line in the H plane

• we use the vertical misalignments as fit parameters

(0,1) line amplitude 
in H plane

(no misalignments)

(0,1) line phase in H 
plane

(no misalignments)

(0,1) line amplitude 
in H plane

with misalignments

(0,1) line phase in H 
plane

with misalignments
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SVD on sextupole vertical misalignments

We build the vector ( ))1,0()1,0(
1

)1,0()1,0(
1 ...... H

NBPM
HH

NBPM
H aaA φφ=
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containing the amplitude and phase of the (0, 1) line in the H planes at all BPMs

We minimize the sum

Example of SVD principal valuesχ2 as a function of the iteration number
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Fitted values for the 24 vertical sextupole misalignments 
obtained from SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

misalignments

with 

misalignments

with 

misalignments 
and corrections
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Fitted values for the 72 vertical sextupole misalignments 
obtained from SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

misalignments

with 

misalignments

with 

misalignments 
and corrections
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Sextupoles gradient errors applied to 24 sextupoles (dK2/K2 = 
5%)

The sextupole gradient errors spoil the compensation of the third order 
resonances, e.g 3Qx = p and Qx – 2Qz = p

• we build the vector of Fourier coefficients of the H(-2,0) and H(0,2) line

• we use the errors gradients as fit parameters

(0,2) line amplitude 
in H plane

(no gradient errors)

(0,2) line amplitude 
in H plane

with gradient errors

(-2,0) line amplitude 
in H plane

(no gradient errors)

(-2,0) line amplitude 
in H plane

with gradient errors
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SVD on sextupole gradient errors

( ))2,0(H
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1
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1 a...aa...aA −−=We build the vector
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MeasuredModel jAjA 22 )()(χ

containing the amplitudes at all BPMs

• the (–2, 0) line in the H plane related to h3000

• the (0, 2) line in the H plane related to h1002

We minimize the sum

χ2 as a function of the iteration number
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Fitted values for the 24 sextupoles gradients errors obtained 
from SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

gradient errors

with 

gradient errors

with gradient 
errors and 
corrections
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Fitted values for the 72 sextupoles gradients errors obtained 
from SVD

Blu dots = assigned misalignments

Red dots = reconstructed misalignments

no 

gradient errors

with 

gradient errors

with gradient 
errors and 
corrections
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ALS example (very early results)
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• Resonance driving term analysis provides quantitative information 
about nolinearities in the machine

• It allows to measure the local distribution of the dominant 
nonlinearities

• However, it does not give a direct information about how harmful 
the nonlinearities are

• Theoretically it can provide a method similar to orbit response
matrix analysis (or phase advance, …) to measure not just the 
gradient and skew gradient distribution, but also the setxupole, 
(octupole), … How well this will work experimentally is not quite 
clear, yet:

•Can we use the spectral lines to recover the LINEAR and NON 
LINEAR machine model with a Least Square method?

• SPS with a few very large nonlinearities worked well. Diamond 
simulations look encouraging. ALS measurements so far seem BPM 
resolution limited. 

Summary
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