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Model independent analysis and independent 
component analysis for BPM data analysis 

X. Huang 
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Examples of turn-by-turn BPM data 
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Many rings are equipped with multiple turn-by-turn BPMs. How to make efficient use 
of the vast amount of data? 
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A model of BPM turn-by-turn data 
•  The turn-by-turn beam position signal is a combination of 

various source signals. 
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Form a matrix of the BPM data 

or 

For the i’th BPM 

A is the mixing matrix 

m BPMs and T 
turns 

There are only a few meaningful source signals, such as betatron oscillation 
and synchrotron oscillation. 

X. Huang, PRSTAB, 8, 064001, 2005 



Betatron modes via singular value decomposition   
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It has been proven* that when the BPM reading contains only one betatron mode, i.e. 
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* Chun-xi Wang, et al. PR-STAB 6, 104001 (2003). 

then there are only two non-trivial SVD eigen-modes  
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u:  spatial vector v:  temporal vector 

Beta function and betatron phase advance can be calculated from the spatial vector.  
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U,V are orthogonal matrices, 
S is a block-diagonal matrix. 

Note the constant orbit offsets are always removed 
for each BPM. This is called “centering”.  



What does SVD do? 
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The BPM data can be viewed as T points in the m-dimensional space.  
))(,),(),(()( 21 txtxtxtP m=

These points form an hyper-ellipsoid. What SVD does is to identify its principal-
axes. This is called principal component analysis (PCA). 
PCA: with a linear orthogonal transformation to obtain a set of linearly un-
correlated components (variables) which holds (successively) the largest 
variances.  

The results in the previous slide states: with only one betatron mode in the BPM 
data, the hyper-ellipsoid degenerates to  an ellipse (2D).  

Projection onto (x1, x2) Projection onto (x1, x3) 

TTT SSUUxx =ΣΣ=    , The U matrix diagonalize the covariance matrix. 



Noise reduction with SVD 
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As the random noises are distributed in all eigen-modes while the signals are 
concentrated in the leading eigen-modes, noise can be reduced by re-constructing 
the data after removing the noise-only (with small singular values) modes.  
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Example of SVD analysis 
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This data set is from tracking the SPEAR3 lattice with added random noise (sigma=0.05 mm).  
You will play with this program (and the data sets) in the computer-lab class.  



Limitation of the PCA method 
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The eigen-modes are determined by the orthogonality and variances (strengths) of 
the components. If two signals have nearly the same strengths, they will be mixed 
in the eigen-modes (degeneracy in eigen-analysis). In reality this is common: 
(1) Horizontal and vertical betatron modes can be mixed.  
(2) Betatron modes can be mixed with the synchrotron mode.  
(3) Actual BPM data are often plagued by signal contamination or failing 
electronics.  
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The first mode with 
real signal is the 7th. 

Horizontal BPM only 



The independent component analysis (ICA) 
•  The source signals are assumed statistically independent. 
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)()(),( 2121 xpxpxxp =

This is a strong condition that the PCA analysis does not make full use of.  

)}({)}({)}()({ 22112211 xhExhExhxhE = For any function h1,h2. 

PCA only requires the components to be linearly uncorrelated, i.e., the 
covariance between two variables is zero.  

0}{}{}{ 2121 =− xExExxE

For two Gaussian variables, uncorrelatedness is equivalent to independence. 
Many ICA algorithms exploit the non-gaussianity of the signals, such as fastICA. 

It is possible to use non-gaussianity based methods for BPM data analysis. But 
we will focus on an algorithm that relies on the time-spectrum of the source 
signals. 
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The Principle  
•  The source signals are assumed to be narrow-band with 

non-overlapping spectra, so their un-equal time covariance 
matrices are diagonal. 

Since 

The mixing matrix A diagonalizes the un-equal 
time sample covariance matrices simultaneously. 
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The Algorithm* - 1 
•  Diagonalize the equal-time covariance matrix (data 

whitening) 
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Set to remove 
noise 

D1,D2 are 
diagonal 

Construct an intermediate “whitened” data matrix 

which satisfies 

This pre-processing step is just PCA. Matrix z contains 
the temporal vectors. 

* The second order blind identification (SOBI) algorithm of A. 
Belouchrani, et al. in IEEE Trans. Signal Processing, 48, 900, (2003). 
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The Algorithm - 2 
•  Jointly diagonalize* the un-equal time covariance matrices 

of matrix z of selected time-lag constants. 
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Then 
and 

for 

The columns of A (spatial vectors) and corresponding 
rows (temporal vectors) of s are the resulting modes. 

*Algorithm for joint diagonalization can be found in J.F. Cardoso and A. 
Souloumiac, SIAM J. Matrix Anal. Appl. 17, 161 (1996) 
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Linear Lattice Functions Measurements 
•  There are two betatron modes because each BPM sees 

different phase. 

•  There is one synchrotron mode. 

2211 sAsAx bb +=

)( 2
2

2
1 bb AAa +=β ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

2

11tan
b

b

A
A

ψ

The betatron component 

Beta function and phase advance 

ll sAx =

lx bAD =
b
sl=δ

The synchrotron component 
Dispersion function and momentum deviation 



USPAS 2012 Summer 14 

Example: de-coupling 

A Plus Mode 

A Minus Mode 

FFT spectra of raw horizontal and vertical BPM 
signals at section L1. Both BPMs see a mixture 
of the “plus” mode and “minus” mode. 

The ICA method can de-couple the normal modes in presence of 
linear coupling.   



Example: SPEAR3 data 
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SPEAR3: the contaminated BPM 
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SPEAR3: the measured phase advance 
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There are a BPM gain errors. But the phase advances are in excellent 
agreement with the model.  

Phase advance between BPMs 



Example: Nonlinear modes in tracking data 
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The betatron modes. 
Data from tracking SPEAR3 model. There are 57 BPMs. 



Example: coupling and nonlinear modes in tracking data  
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Application: APS data  
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From Today’s computer lab 
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