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USPAS 2015 June – Beam Based Diagnostics 

Computer Class – Session 2 

Xiaobiao Huang (6/12/15) 

 

Goals: Practice turn-by-turn BPM data analysis with various techniques. 

 

Part 1: Phase measurement with Castro’s method 

Assume 𝑥𝑖 = sin(2𝜋𝑖𝜈 + 𝜇), for 𝑖 = 1, 2,⋯ ,𝑁, then the phase 𝜇 = atan
𝐶

𝑆
, with 𝐶 = ∑ 𝑥𝑖 cos 2𝜋𝑖𝜈𝑖  and 

𝑆 = ∑ 𝑥𝑖 sin 2𝜋𝑖𝜈𝑖 , where 𝜈 is the tune (P. Castro, et al, PAC 93). 

 

Open the script “tuesday_phase.m” and follow the instructions.  

(This part of the program was modified from an earlier version by Christoph Steier, et al).  

 

Cell 1: Initialization 

Set MML path for SPEAR3.  

 

Cell 2: Plot the beta functions for the nominal lattice 

Use MML function “modeltwiss” to obtain beta functions and phase advances and plot beta (𝛽) vs. 

phase (𝜇). 

 

Cell 3: Add lattice errors by changing one quadrupole 

Increase QF [6, 1] by 1 Amp and re-calculate the beta and phase. Plot the comparison to the nominal 

lattice and the relative beta changes.  

 

Put QF [6, 1] to original value when calculation is done.  

 

Cell 4: Simulate turn-by-turn BPM data 

Track one particle for 1024 turns, with initial 𝑥 and 𝑦 offsets of 0.1 mm. Record the orbit readings at all 

57 BPMs. No noise is added at this time. Data is saved to a file “data_noqerr_nonoise”.  

 

Cell 5: Calculate the tunes and phases from the simulated TbT BPM data 

First the tunes are determined from data recorded at each BPM with function “findfreq.m”. FFT with 

sine window and interpolation are used to determine the tune. Then the betatron phase advances at 

each BPM is determined with function “calcphase.m” using P. Castro’s approach.  

 

The phase advances “measured” from the simulated TbT BPM data are compared to the nominal values 

and the difference is plotted for both transverse planes. The difference is very small.  

 

Cell 6: Add random noise to BPM data and re-calculate phases 
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Random Gaussian noise with a sigma of 10 micron is added to all simulated BPM readings. Tune and 

phase measurements are repeated for the same simulated data (now with noise).  

 

Differences of “measured” phases (with noise) from the nominal phases are added to the plot (Figure 

102). Noise introduces significant errors to the phase measurement.  

 

Cell 7: Change one quadrupole 

Increase QF [6, 1] by 1 Amp and re-calculate beta functions and phases. Plot the actual phase changes 

due to the quadrupole step change as a reference (Figure 103).  

 

Cell 8: Simulate TbT BPM data for the lattice with quadrupole error 

With the quadrupole error, re-do the TbT data tracking and record data at all 57 BPMs. Add Gaussian 

noise with a sigma of 10 micron to all BPMs.  

 

Calculate the “measured” phase advances again with “findfreq.m” and “calcphase.m”.  Add the phases 

to the plot (Figure 103) for comparison.  

 

Step down QF [6, 1] by 1 Amp (back to original value).  

 

Part 2: Precise tune determination 

We evaluate the precision of tune determination for several methods: 

NAFF (Laskar et al): maximize the overlap of power spectrum of the data and the sinusoidal signal. 

IPFA (Bartolini et al):  interpolated FFT.  

Findfreq (Steier): FFT with sine window and interpolation.  

 

Open the script “tuesday_naff.m” and execute the cells as explained below.  

 

Cell 1: 128 turns, no noise 

With tune 𝜈 = 𝜋 − 3 ≈ 0.1415926, generate a discrete sine function data set for 128 turns with unit 

amplitude (1 mm). No noise is added. Evaluate the tune from this data sets with the three methods. 

Errors of the tune determination are shown in the order of NAFF, Findfreq and IPFA.  

 

Cell 2: 128 turns, w/ noise 

Add Gaussian noise of 20 microns to the data. Re-evaluate the tunes and print out errors.  

 

Cell 3: 512 turns, no noise 

With the same tune, generate a data set of 512 turns with amplitude of 1 mm. Evaluate tune 

determination errors.  

 

Cell 4: 512 turns, w/ noise 

Add Gaussian noise of 20 microns to the data. Re-evaluate the tunes and print out errors. 

All three methods have good performance.  
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Part 3: Extracting frequency components 

The precise tune determination methods can be used to extract the frequency components of measured 

signals. In the following we use NAFF.  

 

Open the script “tuesday_fc.m” and execute the cells.  

 

Cell 1: Initialization 

Load SPEAR3 lattice and insert skew quadrupole errors for two magnets.  

 

Cell 2: Tracking for TbT BPM data 

Track 1050 turns and record positions at all BPMs. The initial orbit offsets are 2 mm horizontal and 1 mm 

vertical, respectively.  

 

Cell 3: Plot the Fourier spectrum for one BPM 

Plot the FFT amplitude (1024 turns) in log-scale for both X and Y planes for one BPM. Linear and 

nonlinear coupling components can be seen, such as 𝜈𝑦 − 𝜈𝑥, 𝜈𝑦 + 𝜈𝑥, 2𝜈𝑥, 2𝜈𝑦. 

 

Cell 4: Remove the leading component 

Remove the leading component with NAFF. Plot the Fourier spectrum of the original signal along with 

the residual signal (with the leading component removed).  

 

Cell 5: Iteratively remove the frequency components 

Remove the 10 leading component iteratively. Plot the Fourier spectrum of the original and residual 

signals. List the tunes and strengths of the frequency components. The strengths and phases of the 

frequency components at all BPMs can be used for optics and coupling correction and nonlinear 

dynamics studies.  

 

  
Figure 1: the Fourier spectrum of tracking data for one BPM before and after the 10 leading components 

are extracted and removed. SPEAR3 lattice with coupling is used for tracking. No noise is added to data. 

 

Repeat the above from Cell 3 with random noised added to the BPM signals (uncomment line 56-57). 

Many of the oscillations will be swamped by the noise.   
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Part 4: Independent component analysis (ICA) 

 

We will learn to use the ICA to analyze TbT BPM data. By separating the frequency component 

consistently for all BPMs, we can derive beta functions and phase advances for the normal modes 

(decoupled betatron motion) with high accuracy.  Amplitudes and phases of the coupled linear and 

nonlinear components can also be obtained.  

 

Cell 1: Explore the ICA Matlab GUI 

Launch the Matlab GUI of ICA with  

>> icagui 

On the far right, use the two top boxes to select data sets (the first one for a data category, the second 

one for a data set). The data options can be changed by editing the beginning of “icagui.m” and 

correspondingly the script “icaloaddata.m”.  

 

After selecting the data set, click “Run” to execute the analysis. With the noise level set to zero (default 

value), a popup window will show the singular value spectrum and one can select the number of modes 

to keep. You can set the “noise level” window to a negative integer to set the number of singular values. 

For example, setting the value to −16 will select 16 SVD modes for analysis.  

 

The four plots show the diagonal values of the diagonalized time-delayed convariance matrix (top left), 

the temporal pattern (top right), the spatial pattern (bottom left), and the Fourier spectrum of the 

temporal pattern. Click the “>>” and “<<” buttons to explore the modes.  

 

The default analysis method is “ICA”. This can be changed to PCA (i.e., SVD).  

 

Cell 2: Use the command line ICA function 

The Matlab ICA command line function is “icacmd.m”. One can provide the GUI parameters in a data 

structure and pass this function and perform the ICA data analysis.  

>> dout = icacmd('run', [BPMx; BPMy],paraset); 

The “A” and “s” fields of variable “dout” contain the spatial and temporal patterns of the ICA modes, 

respectively. The modes can be automatically paired up, with 

>> [dummy,pairs] = icacmd('pair', dout); 

>> pairs 

 

One can check the paired modes by viewing their Fourier spectrum.  

>> plotfft(dout.s(pairs(1,:),:)) 

 

Cell 3: Calculate betatron phases with ICA modes – data from SPEAR3 nominal lattice 

Using ICA to analyze the saved tracking TbT BPM data for the SPEAR3 nominal lattice (saved while we 

were working on “tuesday_phase.m”), we derive the beta functions and phase advances from the 

spatial patterns of the ICA modes. This analysis is done in “icatest.m”. The results are plotted along with 

the results of Castro’s method. The error for the ICA method is much lower than Castro’s method.  
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Figure 2: the errors of phase advances obtained from tracking data for the SPEAR3 nominal lattice for 

three cases: (1) no noise in data, w/ Castro’s method for phase measurement: (2) with noise in data, 

Castro’s method; (3) with noise in data, using ICA. 

 

Cell 4: Calculate betatron phases with ICA modes – data from SPEAR3 lattice w/ QF [6, 1] error 

The same analysis for the tracking data with quadrupole QF [6, 1] increased by 1 Amp from nominal 

value. Zoom in to see that the ICA curve overlaps with the target curve.  

 
Figure 3: Phase advance errors introduced by QF [6, 1], w/ +1 Amp current increase. The ICA results 

overlaps with the actual reference value, while Castro’s method shows big errors.  
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Part 5: Decoherence in TbT BPM data 

Open and execute the script “tuesday_decoherence.m” to study the decoherence effect on TbT BPM 

measurements. BPM sees the average position of the bunch. When the bunch of particles is spread out 

in the phase space (decoherence), the measured oscillation amplitude does not reflect those of the 

individual particles in the bunch. Nonlinear detuning at large oscillation amplitude and large 

chromaticity can cause decoherence.  

 

We track a bunch of particles with the nominal SPEAR3 longitudinal distribution.  

  

Cell 1: Nominal chromaticity  

At the nominal chromaticities [2, 2].  

  
Figure 4: Horizontal position (left) and (x, x′) phase space (right) with chromaticity at [2, 2]. 

 

Cell 2: Increased chromaticity  

Increase chromaticities to [6, 6].  

  
 

Figure 5: With chromaticities at [6, 6]. 


