Stephanie Gilbert Corder is the newest beamline scientist at the ALS. Having been an ALS user in the past, she is eager to help others get reliable measurements to make the most of their beamtime. Read more »
A Crackling Analysis of Stripe and Skyrmion Phases
Through statistical analysis of “crackling” (a system’s jerky response to slowly changing conditions), researchers demonstrated fundamental differences between skyrmion and stripe phases in a layered heterostructure. The method has broad applicability to many complex materials of interest for emerging information technologies. Read more »
Here Comes the Sun: A New Framework for Artificial Photosynthesis
Scientists have long sought to mimic the process by which plants make their own fuel using sunlight, carbon dioxide, and water through artificial photosynthesis devices, but exactly how catalysts work to generate renewable fuel remains a mystery. Now, a study has uncovered new insight into how to better control cobalt oxide, one of the most promising catalysts for artificial photosynthesis. Read more »
Shawn Sallis, Materials Science Postdoctoral Fellow
After completing his Ph.D. in materials science at Binghamton University, Shawn Sallis joined the ALS as a postdoc. For the last four years he’s worked with Wanli Yang on higher-capacity batteries. Read more »
Study Concludes Glassy Menagerie of Particles in Beach Sands Near Hiroshima is Fallout Debris from A-Bomb Blast
Mario Wannier was methodically sorting through particles in samples of beach sand from Japan’s Motoujina Peninsula when he spotted something unexpected: a number of tiny, glassy spheres and other unusual objects. X-ray studies have provided evidence that they are A-bomb fallout from the destroyed city of Hiroshima. Read more »
ALS Director Announces Andreas Scholl as New Science Deputy
I am delighted to inform you that our search for a new science deputy has ended successfully with the appointment of ALS senior staff scientist Andreas Scholl. I look forward to working with him as we continue to manage this world-leading facility and get ready for ALS-U science. Read more »
Chiral Crystals Give Rise to Topological Conductors
Researchers have discovered materials whose chiral crystal structures produce chirality in their electronic behavior. These topological conductors retain their unique electronic properties regardless of defects and open new possibilities in materials research. Read more »
Electric Skyrmions Charge Ahead for Next-Generation Data Storage
Researchers have observed chirality for the first time in polar skyrmions in a material with reversible electrical properties. The combination of polar skyrmions and these electrical properties could one day lead to applications such as more powerful data storage devices that hold information even after a device has been powered off. Read more »
Salt in the Amazon Air Comes from Local Fungi
The abundant salt in the atmosphere above the Amazon basin has long been attributed to the Atlantic Ocean. But now, using the Advanced Light Source, scientists have found that much of it originates much more locally: fungal spores in the rainforest. Pinpointing the origin will improve climate models and understanding of rainforest ecosystems. Read more »
Meteorites Suggest Galvanic Origins for Martian Organic Carbon
Nanoscale analyses of Martian meteorites suggest that organic carbon on Mars may have been formed by electrochemical reactions between briny liquids and volcanic minerals, as might occur in a galvanic cell. The study has major implications for astrobiology and could also shed light on the reactions that led to life on the early Earth. Read more »
- « Previous Page
- 1
- …
- 22
- 23
- 24