“Criegee intermediates” are elusive molecules that play a pivotal role in atmospheric chemistry and are also byproducts of key combustion reactions. At the Chemical Dynamics Beamline, the reaction rates of one form of Criegee intermediate was directly measured for the first time, with some surprising results. Read more »
All News & Updates
Two Novel Ultra-Incompressible Materials
Materials that are mechanically, thermally, and chemically stable at extreme conditions are valuable for aerospace engineering and fission/fusion research. Researchers have synthesized and characterized two such materials: Re2N and Re3N are both extremely incompressible. Read more »
Superconducting Topological Insulators
ARPES studies show that it’s possible to introduce superconductivity into a topological insulator. The resulting novel properties, such as relativistic electrons and quantum memory, may in the future provide the basis for a whole new type of computer.
Read more »
ALS Reveals New State of Matter
ALS user groups from Princeton and Stanford have been making waves this past year with several high-profile papers and extensive news coverage of their work on a new state of matter embodied by so-called “topological insulators,” materials that conduct electricity only on their surfaces. Read more »
Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico
To study the effects of oil spilled from the Deepwater Horizon blowout, researchers collected deep-water samples from across the Gulf of Mexico and analyzied their physical, chemical, and microbiological properties using a variety of techniques, including SR-FTIR. Read more »
Platinum Nanoclusters Out-Perform Single Crystals
Researchers have found that under high pressure—comparable to the pressures at which many industrial technologies operate—platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. Read more »
Real-Time Chemical Imaging of Bacterial Biofilm Development
Almost all bacteria can form biofilms—dynamic communities of cells enclosed in self-produced matrices of polymers. Researchers have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Read more »
Mechanical Behavior of Indium Nanostructures
Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. Researchers have investigated the small-scale mechanics of indium nanostructures. Read more »
Solving Structures with Collaborative Crystallography
The Berkeley Center for Structural Biology’s Collaborative Crystallography (CC) program is making major advancements in solving protein structures, especially for users involved in high-throughput projects. The CC program is an NIH-funded, peer-reviewed service that allows external users to apply for both beam time and the support of a crystallographer to perform experiments and subsequent data analyses. Read more »
Observation of a Macroscopically Quantum-Entangled Insulator
It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES. Read more »